summary refs log tree commit diff
path: root/src/Vectors.c
blob: ac0678573d8596050e250ac135ead477b89d7711 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#include "Vectors.h"
#include "ExtMath.h"
#include "Funcs.h"
#include "Constants.h"
#include "Core.h"

void Vec3_Lerp(Vec3* result, const Vec3* a, const Vec3* b, float blend) {
	result->x = blend * (b->x - a->x) + a->x;
	result->y = blend * (b->y - a->y) + a->y;
	result->z = blend * (b->z - a->z) + a->z;
}

void Vec3_Normalise(Vec3* v) {
	float scale, lenSquared;
	lenSquared = v->x * v->x + v->y * v->y + v->z * v->z;
	/* handle zero vector */
	if (!lenSquared) return;

	scale = 1.0f / Math_SqrtF(lenSquared);
	v->x  = v->x * scale;
	v->y  = v->y * scale;
	v->z  = v->z * scale;
}

void Vec3_Transform(Vec3* result, const Vec3* a, const struct Matrix* mat) {
	/* a could be pointing to result - therefore can't directly assign X/Y/Z */
	float x = a->x * mat->row1.x + a->y * mat->row2.x + a->z * mat->row3.x + mat->row4.x;
	float y = a->x * mat->row1.y + a->y * mat->row2.y + a->z * mat->row3.y + mat->row4.y;
	float z = a->x * mat->row1.z + a->y * mat->row2.z + a->z * mat->row3.z + mat->row4.z;
	result->x = x; result->y = y; result->z = z;
}

void Vec3_TransformY(Vec3* result, float y, const struct Matrix* mat) {
	result->x = y * mat->row2.x + mat->row4.x;
	result->y = y * mat->row2.y + mat->row4.y;
	result->z = y * mat->row2.z + mat->row4.z;
}

Vec3 Vec3_RotateX(Vec3 v, float angle) {
	float cosA = Math_CosF(angle);
	float sinA = Math_SinF(angle);
	return Vec3_Create3(v.x, cosA * v.y + sinA * v.z, -sinA * v.y + cosA * v.z);
}

Vec3 Vec3_RotateY(Vec3 v, float angle) {
	float cosA = Math_CosF(angle);
	float sinA = Math_SinF(angle);
	return Vec3_Create3(cosA * v.x - sinA * v.z, v.y, sinA * v.x + cosA * v.z);
}

Vec3 Vec3_RotateY3(float x, float y, float z, float angle) {
	float cosA = Math_CosF(angle);
	float sinA = Math_SinF(angle);
	return Vec3_Create3(cosA * x - sinA * z, y, sinA * x + cosA * z);
}

Vec3 Vec3_RotateZ(Vec3 v, float angle) {
	float cosA = Math_CosF(angle);
	float sinA = Math_SinF(angle);
	return Vec3_Create3(cosA * v.x + sinA * v.y, -sinA * v.x + cosA * v.y, v.z);
}


void IVec3_Floor(IVec3* result, const Vec3* a) {
	result->x = Math_Floor(a->x); result->y = Math_Floor(a->y); result->z = Math_Floor(a->z);
}

void IVec3_ToVec3(Vec3* result, const IVec3* a) {
	result->x = (float)a->x; result->y = (float)a->y; result->z = (float)a->z;
}

void IVec3_Min(IVec3* result, const IVec3* a, const IVec3* b) {
	result->x = min(a->x, b->x); result->y = min(a->y, b->y); result->z = min(a->z, b->z);
}

void IVec3_Max(IVec3* result, const IVec3* a, const IVec3* b) {
	result->x = max(a->x, b->x); result->y = max(a->y, b->y); result->z = max(a->z, b->z);
}


Vec3 Vec3_GetDirVector(float yawRad, float pitchRad) {
	float x = -Math_CosF(pitchRad) * -Math_SinF(yawRad);
	float y = -Math_SinF(pitchRad);
	float z = -Math_CosF(pitchRad) * Math_CosF(yawRad);
	return Vec3_Create3(x, y, z);
}

/*void Vec3_GetHeading(Vector3 dir, float* yaw, float* pitch) {
	*pitch = (float)Math_Asin(-dir.y);
	*yaw =   (float)Math_Atan2(dir.x, -dir.z);
}*/


const struct Matrix Matrix_Identity = Matrix_IdentityValue;

/* Transposed, source https://open.gl/transformations */

void Matrix_RotateX(struct Matrix* result, float angle) {
	float cosA = Math_CosF(angle);
	float sinA = Math_SinF(angle);
	*result = Matrix_Identity;

	result->row2.y = cosA;  result->row2.z = sinA;
	result->row3.y = -sinA; result->row3.z = cosA;
}

void Matrix_RotateY(struct Matrix* result, float angle) {
	float cosA = Math_CosF(angle);
	float sinA = Math_SinF(angle);
	*result = Matrix_Identity;

	result->row1.x = cosA; result->row1.z = -sinA;
	result->row3.x = sinA; result->row3.z = cosA;
}

void Matrix_RotateZ(struct Matrix* result, float angle) {
	float cosA = Math_CosF(angle);
	float sinA = Math_SinF(angle);
	*result = Matrix_Identity;

	result->row1.x = cosA;  result->row1.y = sinA;
	result->row2.x = -sinA; result->row2.y = cosA;
}

void Matrix_Translate(struct Matrix* result, float x, float y, float z) {
	*result = Matrix_Identity;
	result->row4.x = x; result->row4.y = y; result->row4.z = z;
}

void Matrix_Scale(struct Matrix* result, float x, float y, float z) {
	*result = Matrix_Identity;
	result->row1.x = x; result->row2.y = y; result->row3.z = z;
}

void Matrix_Mul(struct Matrix* result, const struct Matrix* left, const struct Matrix* right) {
	/* Originally from http://www.edais.co.uk/blog/?p=27 */
	float
		lM11 = left->row1.x, lM12 = left->row1.y, lM13 = left->row1.z, lM14 = left->row1.w,
		lM21 = left->row2.x, lM22 = left->row2.y, lM23 = left->row2.z, lM24 = left->row2.w,
		lM31 = left->row3.x, lM32 = left->row3.y, lM33 = left->row3.z, lM34 = left->row3.w,
		lM41 = left->row4.x, lM42 = left->row4.y, lM43 = left->row4.z, lM44 = left->row4.w,

		rM11 = right->row1.x, rM12 = right->row1.y, rM13 = right->row1.z, rM14 = right->row1.w,
		rM21 = right->row2.x, rM22 = right->row2.y, rM23 = right->row2.z, rM24 = right->row2.w,
		rM31 = right->row3.x, rM32 = right->row3.y, rM33 = right->row3.z, rM34 = right->row3.w,
		rM41 = right->row4.x, rM42 = right->row4.y, rM43 = right->row4.z, rM44 = right->row4.w;

	result->row1.x = (((lM11 * rM11) + (lM12 * rM21)) + (lM13 * rM31)) + (lM14 * rM41);
	result->row1.y = (((lM11 * rM12) + (lM12 * rM22)) + (lM13 * rM32)) + (lM14 * rM42);
	result->row1.z = (((lM11 * rM13) + (lM12 * rM23)) + (lM13 * rM33)) + (lM14 * rM43);
	result->row1.w = (((lM11 * rM14) + (lM12 * rM24)) + (lM13 * rM34)) + (lM14 * rM44);

	result->row2.x = (((lM21 * rM11) + (lM22 * rM21)) + (lM23 * rM31)) + (lM24 * rM41);
	result->row2.y = (((lM21 * rM12) + (lM22 * rM22)) + (lM23 * rM32)) + (lM24 * rM42);
	result->row2.z = (((lM21 * rM13) + (lM22 * rM23)) + (lM23 * rM33)) + (lM24 * rM43);
	result->row2.w = (((lM21 * rM14) + (lM22 * rM24)) + (lM23 * rM34)) + (lM24 * rM44);

	result->row3.x = (((lM31 * rM11) + (lM32 * rM21)) + (lM33 * rM31)) + (lM34 * rM41);
	result->row3.y = (((lM31 * rM12) + (lM32 * rM22)) + (lM33 * rM32)) + (lM34 * rM42);
	result->row3.z = (((lM31 * rM13) + (lM32 * rM23)) + (lM33 * rM33)) + (lM34 * rM43);
	result->row3.w = (((lM31 * rM14) + (lM32 * rM24)) + (lM33 * rM34)) + (lM34 * rM44);

	result->row4.x = (((lM41 * rM11) + (lM42 * rM21)) + (lM43 * rM31)) + (lM44 * rM41);
	result->row4.y = (((lM41 * rM12) + (lM42 * rM22)) + (lM43 * rM32)) + (lM44 * rM42);
	result->row4.z = (((lM41 * rM13) + (lM42 * rM23)) + (lM43 * rM33)) + (lM44 * rM43);
	result->row4.w = (((lM41 * rM14) + (lM42 * rM24)) + (lM43 * rM34)) + (lM44 * rM44);
}

void Matrix_LookRot(struct Matrix* result, Vec3 pos, Vec2 rot) {
	struct Matrix rotX, rotY, trans;
	Matrix_RotateX(&rotX, rot.y);
	Matrix_RotateY(&rotY, rot.x);
	Matrix_Translate(&trans, -pos.x, -pos.y, -pos.z);

	Matrix_Mul(result, &rotY, &rotX);
	Matrix_Mul(result, &trans, result);
}

/* TODO: Move to matrix instance instead */
static float
frustum00, frustum01, frustum02, frustum03,
frustum10, frustum11, frustum12, frustum13,
frustum20, frustum21, frustum22, frustum23,
frustum30, frustum31, frustum32, frustum33,
frustum40, frustum41, frustum42, frustum43;

static void FrustumCulling_Normalise(float* plane0, float* plane1, float* plane2, float* plane3) {
	float val1 = *plane0, val2 = *plane1, val3 = *plane2;
	float t = Math_SqrtF(val1 * val1 + val2 * val2 + val3 * val3);
	*plane0 /= t; *plane1 /= t; *plane2 /= t; *plane3 /= t;
}

cc_bool FrustumCulling_SphereInFrustum(float x, float y, float z, float radius) {
	float d = frustum00 * x + frustum01 * y + frustum02 * z + frustum03;
	if (d <= -radius) return false;

	d = frustum10 * x + frustum11 * y + frustum12 * z + frustum13;
	if (d <= -radius) return false;

	d = frustum20 * x + frustum21 * y + frustum22 * z + frustum23;
	if (d <= -radius) return false;

	d = frustum30 * x + frustum31 * y + frustum32 * z + frustum33;
	if (d <= -radius) return false;

	d = frustum40 * x + frustum41 * y + frustum42 * z + frustum43;
	if (d <= -radius) return false;
	/* Don't test NEAR plane, it's pointless */
	return true;
}

void FrustumCulling_CalcFrustumEquations(struct Matrix* projection, struct Matrix* modelView) {
	struct Matrix clip;
	Matrix_Mul(&clip, modelView, projection);

	/* Extract the RIGHT plane */
	frustum00 = clip.row1.w - clip.row1.x;
	frustum01 = clip.row2.w - clip.row2.x;
	frustum02 = clip.row3.w - clip.row3.x;
	frustum03 = clip.row4.w - clip.row4.x;
	FrustumCulling_Normalise(&frustum00, &frustum01, &frustum02, &frustum03);

	/* Extract the LEFT plane */
	frustum10 = clip.row1.w + clip.row1.x;
	frustum11 = clip.row2.w + clip.row2.x;
	frustum12 = clip.row3.w + clip.row3.x;
	frustum13 = clip.row4.w + clip.row4.x;
	FrustumCulling_Normalise(&frustum10, &frustum11, &frustum12, &frustum13);

	/* Extract the BOTTOM plane */
	frustum20 = clip.row1.w + clip.row1.y;
	frustum21 = clip.row2.w + clip.row2.y;
	frustum22 = clip.row3.w + clip.row3.y;
	frustum23 = clip.row4.w + clip.row4.y;
	FrustumCulling_Normalise(&frustum20, &frustum21, &frustum22, &frustum23);

	/* Extract the TOP plane */
	frustum30 = clip.row1.w - clip.row1.y;
	frustum31 = clip.row2.w - clip.row2.y;
	frustum32 = clip.row3.w - clip.row3.y;
	frustum33 = clip.row4.w - clip.row4.y;
	FrustumCulling_Normalise(&frustum30, &frustum31, &frustum32, &frustum33);

	/* Extract the FAR plane (Different for each graphics backend) */
#if (CC_GFX_BACKEND == CC_GFX_BACKEND_D3D9) || (CC_GFX_BACKEND == CC_GFX_BACKEND_D3D11)
	/* OpenGL and Direct3D require slightly different behaviour for NEAR clipping planes */
	/* https://www.gamedevs.org/uploads/fast-extraction-viewing-frustum-planes-from-world-view-projection-matrix.pdf */
	/* (and because reverse Z is used, 'NEAR' plane is actually the 'FAR' clipping plane) */
	frustum40 = clip.row1.z;
	frustum41 = clip.row2.z;
	frustum42 = clip.row3.z;
	frustum43 = clip.row4.z;
#else
	frustum40 = clip.row1.w - clip.row1.z;
	frustum41 = clip.row2.w - clip.row2.z;
	frustum42 = clip.row3.w - clip.row3.z;
	frustum43 = clip.row4.w - clip.row4.z;
#endif
	FrustumCulling_Normalise(&frustum40, &frustum41, &frustum42, &frustum43);
}