summary refs log tree commit diff
path: root/third_party/bearssl/src/rsa_i15_keygen.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/bearssl/src/rsa_i15_keygen.c')
-rw-r--r--third_party/bearssl/src/rsa_i15_keygen.c583
1 files changed, 583 insertions, 0 deletions
diff --git a/third_party/bearssl/src/rsa_i15_keygen.c b/third_party/bearssl/src/rsa_i15_keygen.c
new file mode 100644
index 0000000..e8da419
--- /dev/null
+++ b/third_party/bearssl/src/rsa_i15_keygen.c
@@ -0,0 +1,583 @@
+/*
+ * Copyright (c) 2018 Thomas Pornin <[email protected]>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining 
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be 
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "inner.h"
+
+/*
+ * Make a random integer of the provided size. The size is encoded.
+ * The header word is untouched.
+ */
+static void
+mkrand(const br_prng_class **rng, uint16_t *x, uint32_t esize)
+{
+	size_t u, len;
+	unsigned m;
+
+	len = (esize + 15) >> 4;
+	(*rng)->generate(rng, x + 1, len * sizeof(uint16_t));
+	for (u = 1; u < len; u ++) {
+		x[u] &= 0x7FFF;
+	}
+	m = esize & 15;
+	if (m == 0) {
+		x[len] &= 0x7FFF;
+	} else {
+		x[len] &= 0x7FFF >> (15 - m);
+	}
+}
+
+/*
+ * This is the big-endian unsigned representation of the product of
+ * all small primes from 13 to 1481.
+ */
+static const unsigned char SMALL_PRIMES[] = {
+	0x2E, 0xAB, 0x92, 0xD1, 0x8B, 0x12, 0x47, 0x31, 0x54, 0x0A,
+	0x99, 0x5D, 0x25, 0x5E, 0xE2, 0x14, 0x96, 0x29, 0x1E, 0xB7,
+	0x78, 0x70, 0xCC, 0x1F, 0xA5, 0xAB, 0x8D, 0x72, 0x11, 0x37,
+	0xFB, 0xD8, 0x1E, 0x3F, 0x5B, 0x34, 0x30, 0x17, 0x8B, 0xE5,
+	0x26, 0x28, 0x23, 0xA1, 0x8A, 0xA4, 0x29, 0xEA, 0xFD, 0x9E,
+	0x39, 0x60, 0x8A, 0xF3, 0xB5, 0xA6, 0xEB, 0x3F, 0x02, 0xB6,
+	0x16, 0xC3, 0x96, 0x9D, 0x38, 0xB0, 0x7D, 0x82, 0x87, 0x0C,
+	0xF7, 0xBE, 0x24, 0xE5, 0x5F, 0x41, 0x04, 0x79, 0x76, 0x40,
+	0xE7, 0x00, 0x22, 0x7E, 0xB5, 0x85, 0x7F, 0x8D, 0x01, 0x50,
+	0xE9, 0xD3, 0x29, 0x42, 0x08, 0xB3, 0x51, 0x40, 0x7B, 0xD7,
+	0x8D, 0xCC, 0x10, 0x01, 0x64, 0x59, 0x28, 0xB6, 0x53, 0xF3,
+	0x50, 0x4E, 0xB1, 0xF2, 0x58, 0xCD, 0x6E, 0xF5, 0x56, 0x3E,
+	0x66, 0x2F, 0xD7, 0x07, 0x7F, 0x52, 0x4C, 0x13, 0x24, 0xDC,
+	0x8E, 0x8D, 0xCC, 0xED, 0x77, 0xC4, 0x21, 0xD2, 0xFD, 0x08,
+	0xEA, 0xD7, 0xC0, 0x5C, 0x13, 0x82, 0x81, 0x31, 0x2F, 0x2B,
+	0x08, 0xE4, 0x80, 0x04, 0x7A, 0x0C, 0x8A, 0x3C, 0xDC, 0x22,
+	0xE4, 0x5A, 0x7A, 0xB0, 0x12, 0x5E, 0x4A, 0x76, 0x94, 0x77,
+	0xC2, 0x0E, 0x92, 0xBA, 0x8A, 0xA0, 0x1F, 0x14, 0x51, 0x1E,
+	0x66, 0x6C, 0x38, 0x03, 0x6C, 0xC7, 0x4A, 0x4B, 0x70, 0x80,
+	0xAF, 0xCA, 0x84, 0x51, 0xD8, 0xD2, 0x26, 0x49, 0xF5, 0xA8,
+	0x5E, 0x35, 0x4B, 0xAC, 0xCE, 0x29, 0x92, 0x33, 0xB7, 0xA2,
+	0x69, 0x7D, 0x0C, 0xE0, 0x9C, 0xDB, 0x04, 0xD6, 0xB4, 0xBC,
+	0x39, 0xD7, 0x7F, 0x9E, 0x9D, 0x78, 0x38, 0x7F, 0x51, 0x54,
+	0x50, 0x8B, 0x9E, 0x9C, 0x03, 0x6C, 0xF5, 0x9D, 0x2C, 0x74,
+	0x57, 0xF0, 0x27, 0x2A, 0xC3, 0x47, 0xCA, 0xB9, 0xD7, 0x5C,
+	0xFF, 0xC2, 0xAC, 0x65, 0x4E, 0xBD
+};
+
+/*
+ * We need temporary values for at least 7 integers of the same size
+ * as a factor (including header word); more space helps with performance
+ * (in modular exponentiations), but we much prefer to remain under
+ * 2 kilobytes in total, to save stack space. The macro TEMPS below
+ * exceeds 1024 (which is a count in 16-bit words) when BR_MAX_RSA_SIZE
+ * is greater than 4350 (default value is 4096, so the 2-kB limit is
+ * maintained unless BR_MAX_RSA_SIZE was modified).
+ */
+#define MAX(x, y)   ((x) > (y) ? (x) : (y))
+#define TEMPS       MAX(1024, 7 * ((((BR_MAX_RSA_SIZE + 1) >> 1) + 29) / 15))
+
+/*
+ * Perform trial division on a candidate prime. This computes
+ * y = SMALL_PRIMES mod x, then tries to compute y/y mod x. The
+ * br_i15_moddiv() function will report an error if y is not invertible
+ * modulo x. Returned value is 1 on success (none of the small primes
+ * divides x), 0 on error (a non-trivial GCD is obtained).
+ *
+ * This function assumes that x is odd.
+ */
+static uint32_t
+trial_divisions(const uint16_t *x, uint16_t *t)
+{
+	uint16_t *y;
+	uint16_t x0i;
+
+	y = t;
+	t += 1 + ((x[0] + 15) >> 4);
+	x0i = br_i15_ninv15(x[1]);
+	br_i15_decode_reduce(y, SMALL_PRIMES, sizeof SMALL_PRIMES, x);
+	return br_i15_moddiv(y, y, x, x0i, t);
+}
+
+/*
+ * Perform n rounds of Miller-Rabin on the candidate prime x. This
+ * function assumes that x = 3 mod 4.
+ *
+ * Returned value is 1 on success (all rounds completed successfully),
+ * 0 otherwise.
+ */
+static uint32_t
+miller_rabin(const br_prng_class **rng, const uint16_t *x, int n,
+	uint16_t *t, size_t tlen)
+{
+	/*
+	 * Since x = 3 mod 4, the Miller-Rabin test is simple:
+	 *  - get a random base a (such that 1 < a < x-1)
+	 *  - compute z = a^((x-1)/2) mod x
+	 *  - if z != 1 and z != x-1, the number x is composite
+	 *
+	 * We generate bases 'a' randomly with a size which is
+	 * one bit less than x, which ensures that a < x-1. It
+	 * is not useful to verify that a > 1 because the probability
+	 * that we get a value a equal to 0 or 1 is much smaller
+	 * than the probability of our Miller-Rabin tests not to
+	 * detect a composite, which is already quite smaller than the
+	 * probability of the hardware misbehaving and return a
+	 * composite integer because of some glitch (e.g. bad RAM
+	 * or ill-timed cosmic ray).
+	 */
+	unsigned char *xm1d2;
+	size_t xlen, xm1d2_len, xm1d2_len_u16, u;
+	uint32_t asize;
+	unsigned cc;
+	uint16_t x0i;
+
+	/*
+	 * Compute (x-1)/2 (encoded).
+	 */
+	xm1d2 = (unsigned char *)t;
+	xm1d2_len = ((x[0] - (x[0] >> 4)) + 7) >> 3;
+	br_i15_encode(xm1d2, xm1d2_len, x);
+	cc = 0;
+	for (u = 0; u < xm1d2_len; u ++) {
+		unsigned w;
+
+		w = xm1d2[u];
+		xm1d2[u] = (unsigned char)((w >> 1) | cc);
+		cc = w << 7;
+	}
+
+	/*
+	 * We used some words of the provided buffer for (x-1)/2.
+	 */
+	xm1d2_len_u16 = (xm1d2_len + 1) >> 1;
+	t += xm1d2_len_u16;
+	tlen -= xm1d2_len_u16;
+
+	xlen = (x[0] + 15) >> 4;
+	asize = x[0] - 1 - EQ0(x[0] & 15);
+	x0i = br_i15_ninv15(x[1]);
+	while (n -- > 0) {
+		uint16_t *a;
+		uint32_t eq1, eqm1;
+
+		/*
+		 * Generate a random base. We don't need the base to be
+		 * really uniform modulo x, so we just get a random
+		 * number which is one bit shorter than x.
+		 */
+		a = t;
+		a[0] = x[0];
+		a[xlen] = 0;
+		mkrand(rng, a, asize);
+
+		/*
+		 * Compute a^((x-1)/2) mod x. We assume here that the
+		 * function will not fail (the temporary array is large
+		 * enough).
+		 */
+		br_i15_modpow_opt(a, xm1d2, xm1d2_len,
+			x, x0i, t + 1 + xlen, tlen - 1 - xlen);
+
+		/*
+		 * We must obtain either 1 or x-1. Note that x is odd,
+		 * hence x-1 differs from x only in its low word (no
+		 * carry).
+		 */
+		eq1 = a[1] ^ 1;
+		eqm1 = a[1] ^ (x[1] - 1);
+		for (u = 2; u <= xlen; u ++) {
+			eq1 |= a[u];
+			eqm1 |= a[u] ^ x[u];
+		}
+
+		if ((EQ0(eq1) | EQ0(eqm1)) == 0) {
+			return 0;
+		}
+	}
+	return 1;
+}
+
+/*
+ * Create a random prime of the provided size. 'size' is the _encoded_
+ * bit length. The two top bits and the two bottom bits are set to 1.
+ */
+static void
+mkprime(const br_prng_class **rng, uint16_t *x, uint32_t esize,
+	uint32_t pubexp, uint16_t *t, size_t tlen)
+{
+	size_t len;
+
+	x[0] = esize;
+	len = (esize + 15) >> 4;
+	for (;;) {
+		size_t u;
+		uint32_t m3, m5, m7, m11;
+		int rounds;
+
+		/*
+		 * Generate random bits. We force the two top bits and the
+		 * two bottom bits to 1.
+		 */
+		mkrand(rng, x, esize);
+		if ((esize & 15) == 0) {
+			x[len] |= 0x6000;
+		} else if ((esize & 15) == 1) {
+			x[len] |= 0x0001;
+			x[len - 1] |= 0x4000;
+		} else {
+			x[len] |= 0x0003 << ((esize & 15) - 2);
+		}
+		x[1] |= 0x0003;
+
+		/*
+		 * Trial division with low primes (3, 5, 7 and 11). We
+		 * use the following properties:
+		 *
+		 *   2^2 = 1 mod 3
+		 *   2^4 = 1 mod 5
+		 *   2^3 = 1 mod 7
+		 *   2^10 = 1 mod 11
+		 */
+		m3 = 0;
+		m5 = 0;
+		m7 = 0;
+		m11 = 0;
+		for (u = 0; u < len; u ++) {
+			uint32_t w;
+
+			w = x[1 + u];
+			m3 += w << (u & 1);
+			m3 = (m3 & 0xFF) + (m3 >> 8);
+			m5 += w << ((4 - u) & 3);
+			m5 = (m5 & 0xFF) + (m5 >> 8);
+			m7 += w;
+			m7 = (m7 & 0x1FF) + (m7 >> 9);
+			m11 += w << (5 & -(u & 1));
+			m11 = (m11 & 0x3FF) + (m11 >> 10);
+		}
+
+		/*
+		 * Maximum values of m* at this point:
+		 *  m3:   511
+		 *  m5:   2310
+		 *  m7:   510
+		 *  m11:  2047
+		 * We use the same properties to make further reductions.
+		 */
+
+		m3 = (m3 & 0x0F) + (m3 >> 4);      /* max: 46 */
+		m3 = (m3 & 0x0F) + (m3 >> 4);      /* max: 16 */
+		m3 = ((m3 * 43) >> 5) & 3;
+
+		m5 = (m5 & 0xFF) + (m5 >> 8);      /* max: 263 */
+		m5 = (m5 & 0x0F) + (m5 >> 4);      /* max: 30 */
+		m5 = (m5 & 0x0F) + (m5 >> 4);      /* max: 15 */
+		m5 -= 10 & -GT(m5, 9);
+		m5 -= 5 & -GT(m5, 4);
+
+		m7 = (m7 & 0x3F) + (m7 >> 6);      /* max: 69 */
+		m7 = (m7 & 7) + (m7 >> 3);         /* max: 14 */
+		m7 = ((m7 * 147) >> 7) & 7;
+
+		/*
+		 * 2^5 = 32 = -1 mod 11.
+		 */
+		m11 = (m11 & 0x1F) + 66 - (m11 >> 5);   /* max: 97 */
+		m11 -= 88 & -GT(m11, 87);
+		m11 -= 44 & -GT(m11, 43);
+		m11 -= 22 & -GT(m11, 21);
+		m11 -= 11 & -GT(m11, 10);
+
+		/*
+		 * If any of these modulo is 0, then the candidate is
+		 * not prime. Also, if pubexp is 3, 5, 7 or 11, and the
+		 * corresponding modulus is 1, then the candidate must
+		 * be rejected, because we need e to be invertible
+		 * modulo p-1. We can use simple comparisons here
+		 * because they won't leak information on a candidate
+		 * that we keep, only on one that we reject (and is thus
+		 * not secret).
+		 */
+		if (m3 == 0 || m5 == 0 || m7 == 0 || m11 == 0) {
+			continue;
+		}
+		if ((pubexp == 3 && m3 == 1)
+			|| (pubexp == 5 && m5 == 1)
+			|| (pubexp == 7 && m7 == 1)
+			|| (pubexp == 11 && m11 == 1))
+		{
+			continue;
+		}
+
+		/*
+		 * More trial divisions.
+		 */
+		if (!trial_divisions(x, t)) {
+			continue;
+		}
+
+		/*
+		 * Miller-Rabin algorithm. Since we selected a random
+		 * integer, not a maliciously crafted integer, we can use
+		 * relatively few rounds to lower the risk of a false
+		 * positive (i.e. declaring prime a non-prime) under
+		 * 2^(-80). It is not useful to lower the probability much
+		 * below that, since that would be substantially below
+		 * the probability of the hardware misbehaving. Sufficient
+		 * numbers of rounds are extracted from the Handbook of
+		 * Applied Cryptography, note 4.49 (page 149).
+		 *
+		 * Since we work on the encoded size (esize), we need to
+		 * compare with encoded thresholds.
+		 */
+		if (esize < 320) {
+			rounds = 12;
+		} else if (esize < 480) {
+			rounds = 9;
+		} else if (esize < 693) {
+			rounds = 6;
+		} else if (esize < 906) {
+			rounds = 4;
+		} else if (esize < 1386) {
+			rounds = 3;
+		} else {
+			rounds = 2;
+		}
+
+		if (miller_rabin(rng, x, rounds, t, tlen)) {
+			return;
+		}
+	}
+}
+
+/*
+ * Let p be a prime (p > 2^33, p = 3 mod 4). Let m = (p-1)/2, provided
+ * as parameter (with announced bit length equal to that of p). This
+ * function computes d = 1/e mod p-1 (for an odd integer e). Returned
+ * value is 1 on success, 0 on error (an error is reported if e is not
+ * invertible modulo p-1).
+ *
+ * The temporary buffer (t) must have room for at least 4 integers of
+ * the size of p.
+ */
+static uint32_t
+invert_pubexp(uint16_t *d, const uint16_t *m, uint32_t e, uint16_t *t)
+{
+	uint16_t *f;
+	uint32_t r;
+
+	f = t;
+	t += 1 + ((m[0] + 15) >> 4);
+
+	/*
+	 * Compute d = 1/e mod m. Since p = 3 mod 4, m is odd.
+	 */
+	br_i15_zero(d, m[0]);
+	d[1] = 1;
+	br_i15_zero(f, m[0]);
+	f[1] = e & 0x7FFF;
+	f[2] = (e >> 15) & 0x7FFF;
+	f[3] = e >> 30;
+	r = br_i15_moddiv(d, f, m, br_i15_ninv15(m[1]), t);
+
+	/*
+	 * We really want d = 1/e mod p-1, with p = 2m. By the CRT,
+	 * the result is either the d we got, or d + m.
+	 *
+	 * Let's write e*d = 1 + k*m, for some integer k. Integers e
+	 * and m are odd. If d is odd, then e*d is odd, which implies
+	 * that k must be even; in that case, e*d = 1 + (k/2)*2m, and
+	 * thus d is already fine. Conversely, if d is even, then k
+	 * is odd, and we must add m to d in order to get the correct
+	 * result.
+	 */
+	br_i15_add(d, m, (uint32_t)(1 - (d[1] & 1)));
+
+	return r;
+}
+
+/*
+ * Swap two buffers in RAM. They must be disjoint.
+ */
+static void
+bufswap(void *b1, void *b2, size_t len)
+{
+	size_t u;
+	unsigned char *buf1, *buf2;
+
+	buf1 = b1;
+	buf2 = b2;
+	for (u = 0; u < len; u ++) {
+		unsigned w;
+
+		w = buf1[u];
+		buf1[u] = buf2[u];
+		buf2[u] = w;
+	}
+}
+
+/* see bearssl_rsa.h */
+uint32_t
+br_rsa_i15_keygen(const br_prng_class **rng,
+	br_rsa_private_key *sk, void *kbuf_priv,
+	br_rsa_public_key *pk, void *kbuf_pub,
+	unsigned size, uint32_t pubexp)
+{
+	uint32_t esize_p, esize_q;
+	size_t plen, qlen, tlen;
+	uint16_t *p, *q, *t;
+	uint16_t tmp[TEMPS];
+	uint32_t r;
+
+	if (size < BR_MIN_RSA_SIZE || size > BR_MAX_RSA_SIZE) {
+		return 0;
+	}
+	if (pubexp == 0) {
+		pubexp = 3;
+	} else if (pubexp == 1 || (pubexp & 1) == 0) {
+		return 0;
+	}
+
+	esize_p = (size + 1) >> 1;
+	esize_q = size - esize_p;
+	sk->n_bitlen = size;
+	sk->p = kbuf_priv;
+	sk->plen = (esize_p + 7) >> 3;
+	sk->q = sk->p + sk->plen;
+	sk->qlen = (esize_q + 7) >> 3;
+	sk->dp = sk->q + sk->qlen;
+	sk->dplen = sk->plen;
+	sk->dq = sk->dp + sk->dplen;
+	sk->dqlen = sk->qlen;
+	sk->iq = sk->dq + sk->dqlen;
+	sk->iqlen = sk->plen;
+
+	if (pk != NULL) {
+		pk->n = kbuf_pub;
+		pk->nlen = (size + 7) >> 3;
+		pk->e = pk->n + pk->nlen;
+		pk->elen = 4;
+		br_enc32be(pk->e, pubexp);
+		while (*pk->e == 0) {
+			pk->e ++;
+			pk->elen --;
+		}
+	}
+
+	/*
+	 * We now switch to encoded sizes.
+	 *
+	 * floor((x * 17477) / (2^18)) is equal to floor(x/15) for all
+	 * integers x from 0 to 23833.
+	 */
+	esize_p += MUL15(esize_p, 17477) >> 18;
+	esize_q += MUL15(esize_q, 17477) >> 18;
+	plen = (esize_p + 15) >> 4;
+	qlen = (esize_q + 15) >> 4;
+	p = tmp;
+	q = p + 1 + plen;
+	t = q + 1 + qlen;
+	tlen = ((sizeof tmp) / sizeof(uint16_t)) - (2 + plen + qlen);
+
+	/*
+	 * When looking for primes p and q, we temporarily divide
+	 * candidates by 2, in order to compute the inverse of the
+	 * public exponent.
+	 */
+
+	for (;;) {
+		mkprime(rng, p, esize_p, pubexp, t, tlen);
+		br_i15_rshift(p, 1);
+		if (invert_pubexp(t, p, pubexp, t + 1 + plen)) {
+			br_i15_add(p, p, 1);
+			p[1] |= 1;
+			br_i15_encode(sk->p, sk->plen, p);
+			br_i15_encode(sk->dp, sk->dplen, t);
+			break;
+		}
+	}
+
+	for (;;) {
+		mkprime(rng, q, esize_q, pubexp, t, tlen);
+		br_i15_rshift(q, 1);
+		if (invert_pubexp(t, q, pubexp, t + 1 + qlen)) {
+			br_i15_add(q, q, 1);
+			q[1] |= 1;
+			br_i15_encode(sk->q, sk->qlen, q);
+			br_i15_encode(sk->dq, sk->dqlen, t);
+			break;
+		}
+	}
+
+	/*
+	 * If p and q have the same size, then it is possible that q > p
+	 * (when the target modulus size is odd, we generate p with a
+	 * greater bit length than q). If q > p, we want to swap p and q
+	 * (and also dp and dq) for two reasons:
+	 *  - The final step below (inversion of q modulo p) is easier if
+	 *    p > q.
+	 *  - While BearSSL's RSA code is perfectly happy with RSA keys such
+	 *    that p < q, some other implementations have restrictions and
+	 *    require p > q.
+	 *
+	 * Note that we can do a simple non-constant-time swap here,
+	 * because the only information we leak here is that we insist on
+	 * returning p and q such that p > q, which is not a secret.
+	 */
+	if (esize_p == esize_q && br_i15_sub(p, q, 0) == 1) {
+		bufswap(p, q, (1 + plen) * sizeof *p);
+		bufswap(sk->p, sk->q, sk->plen);
+		bufswap(sk->dp, sk->dq, sk->dplen);
+	}
+
+	/*
+	 * We have produced p, q, dp and dq. We can now compute iq = 1/d mod p.
+	 *
+	 * We ensured that p >= q, so this is just a matter of updating the
+	 * header word for q (and possibly adding an extra word).
+	 *
+	 * Theoretically, the call below may fail, in case we were
+	 * extraordinarily unlucky, and p = q. Another failure case is if
+	 * Miller-Rabin failed us _twice_, and p and q are non-prime and
+	 * have a factor is common. We report the error mostly because it
+	 * is cheap and we can, but in practice this never happens (or, at
+	 * least, it happens way less often than hardware glitches).
+	 */
+	q[0] = p[0];
+	if (plen > qlen) {
+		q[plen] = 0;
+		t ++;
+		tlen --;
+	}
+	br_i15_zero(t, p[0]);
+	t[1] = 1;
+	r = br_i15_moddiv(t, q, p, br_i15_ninv15(p[1]), t + 1 + plen);
+	br_i15_encode(sk->iq, sk->iqlen, t);
+
+	/*
+	 * Compute the public modulus too, if required.
+	 */
+	if (pk != NULL) {
+		br_i15_zero(t, p[0]);
+		br_i15_mulacc(t, p, q);
+		br_i15_encode(pk->n, pk->nlen, t);
+	}
+
+	return r;
+}