summary refs log tree commit diff
path: root/third_party/bearssl/src/ec_c25519_m62.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/bearssl/src/ec_c25519_m62.c')
-rw-r--r--third_party/bearssl/src/ec_c25519_m62.c605
1 files changed, 605 insertions, 0 deletions
diff --git a/third_party/bearssl/src/ec_c25519_m62.c b/third_party/bearssl/src/ec_c25519_m62.c
new file mode 100644
index 0000000..6b058eb
--- /dev/null
+++ b/third_party/bearssl/src/ec_c25519_m62.c
@@ -0,0 +1,605 @@
+/*
+ * Copyright (c) 2018 Thomas Pornin <[email protected]>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining 
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be 
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "inner.h"
+
+#if BR_INT128 || BR_UMUL128
+
+#if BR_UMUL128
+#include <intrin.h>
+#endif
+
+static const unsigned char GEN[] = {
+	0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
+};
+
+static const unsigned char ORDER[] = {
+	0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
+};
+
+static const unsigned char *
+api_generator(int curve, size_t *len)
+{
+	(void)curve;
+	*len = 32;
+	return GEN;
+}
+
+static const unsigned char *
+api_order(int curve, size_t *len)
+{
+	(void)curve;
+	*len = 32;
+	return ORDER;
+}
+
+static size_t
+api_xoff(int curve, size_t *len)
+{
+	(void)curve;
+	*len = 32;
+	return 0;
+}
+
+/*
+ * A field element is encoded as five 64-bit integers, in basis 2^51.
+ * Limbs may be occasionally larger than 2^51, to save on carry
+ * propagation costs.
+ */
+
+#define MASK51   (((uint64_t)1 << 51) - (uint64_t)1)
+
+/*
+ * Swap two field elements, conditionally on a flag.
+ */
+static inline void
+f255_cswap(uint64_t *a, uint64_t *b, uint32_t ctl)
+{
+	uint64_t m, w;
+
+	m = -(uint64_t)ctl;
+	w = m & (a[0] ^ b[0]); a[0] ^= w; b[0] ^= w;
+	w = m & (a[1] ^ b[1]); a[1] ^= w; b[1] ^= w;
+	w = m & (a[2] ^ b[2]); a[2] ^= w; b[2] ^= w;
+	w = m & (a[3] ^ b[3]); a[3] ^= w; b[3] ^= w;
+	w = m & (a[4] ^ b[4]); a[4] ^= w; b[4] ^= w;
+}
+
+/*
+ * Addition with no carry propagation. Limbs double in size.
+ */
+static inline void
+f255_add(uint64_t *d, const uint64_t *a, const uint64_t *b)
+{
+	d[0] = a[0] + b[0];
+	d[1] = a[1] + b[1];
+	d[2] = a[2] + b[2];
+	d[3] = a[3] + b[3];
+	d[4] = a[4] + b[4];
+}
+
+/*
+ * Subtraction.
+ * On input, limbs must fit on 60 bits each. On output, result is
+ * partially reduced, with max value 2^255+19456; moreover, all
+ * limbs will fit on 51 bits, except the low limb, which may have
+ * value up to 2^51+19455.
+ */
+static inline void
+f255_sub(uint64_t *d, const uint64_t *a, const uint64_t *b)
+{
+	uint64_t cc, w;
+
+	/*
+	 * We compute d = (2^255-19)*1024 + a - b. Since the limbs
+	 * fit on 60 bits, the maximum value of operands are slightly
+	 * more than 2^264, but much less than 2^265-19456. This
+	 * ensures that the result is positive.
+	 */
+
+	/*
+	 * Initial carry is 19456, since we add 2^265-19456. Each
+	 * individual subtraction may yield a carry up to 513.
+	 */
+	w = a[0] - b[0] - 19456;
+	d[0] = w & MASK51;
+	cc = -(w >> 51) & 0x3FF;
+	w = a[1] - b[1] - cc;
+	d[1] = w & MASK51;
+	cc = -(w >> 51) & 0x3FF;
+	w = a[2] - b[2] - cc;
+	d[2] = w & MASK51;
+	cc = -(w >> 51) & 0x3FF;
+	w = a[3] - b[3] - cc;
+	d[3] = w & MASK51;
+	cc = -(w >> 51) & 0x3FF;
+	d[4] = ((uint64_t)1 << 61) + a[4] - b[4] - cc;
+
+	/*
+	 * Partial reduction. The intermediate result may be up to
+	 * slightly above 2^265, but less than 2^265+2^255. When we
+	 * truncate to 255 bits, the upper bits will be at most 1024.
+	 */
+	d[0] += 19 * (d[4] >> 51);
+	d[4] &= MASK51;
+}
+
+/*
+ * UMUL51(hi, lo, x, y) computes:
+ *
+ *   hi = floor((x * y) / (2^51))
+ *   lo = x * y mod 2^51
+ *
+ * Note that lo < 2^51, but "hi" may be larger, if the input operands are
+ * larger.
+ */
+#if BR_INT128
+
+#define UMUL51(hi, lo, x, y)   do { \
+		unsigned __int128 umul_tmp; \
+		umul_tmp = (unsigned __int128)(x) * (unsigned __int128)(y); \
+		(hi) = (uint64_t)(umul_tmp >> 51); \
+		(lo) = (uint64_t)umul_tmp & MASK51; \
+	} while (0)
+
+#elif BR_UMUL128
+
+#define UMUL51(hi, lo, x, y)   do { \
+		uint64_t umul_hi, umul_lo; \
+		umul_lo = _umul128((x), (y), &umul_hi); \
+		(hi) = (umul_hi << 13) | (umul_lo >> 51); \
+		(lo) = umul_lo & MASK51; \
+	} while (0)
+
+#endif
+
+/*
+ * Multiplication.
+ * On input, limbs must fit on 54 bits each.
+ * On output, limb 0 is at most 2^51 + 155647, and other limbs fit
+ * on 51 bits each.
+ */
+static inline void
+f255_mul(uint64_t *d, uint64_t *a, uint64_t *b)
+{
+	uint64_t t[10], hi, lo, w, cc;
+
+	/*
+	 * Perform cross products, accumulating values without carry
+	 * propagation.
+	 *
+	 * Since input limbs fit on 54 bits each, each individual
+	 * UMUL51 will produce a "hi" of less than 2^57. The maximum
+	 * sum will be at most 5*(2^57-1) + 4*(2^51-1) (for t[5]),
+	 * i.e. less than 324*2^51.
+	 */
+
+	UMUL51(t[1], t[0], a[0], b[0]);
+
+	UMUL51(t[2], lo, a[1], b[0]); t[1] += lo;
+	UMUL51(hi, lo, a[0], b[1]); t[1] += lo; t[2] += hi;
+
+	UMUL51(t[3], lo, a[2], b[0]); t[2] += lo;
+	UMUL51(hi, lo, a[1], b[1]); t[2] += lo; t[3] += hi;
+	UMUL51(hi, lo, a[0], b[2]); t[2] += lo; t[3] += hi;
+
+	UMUL51(t[4], lo, a[3], b[0]); t[3] += lo;
+	UMUL51(hi, lo, a[2], b[1]); t[3] += lo; t[4] += hi;
+	UMUL51(hi, lo, a[1], b[2]); t[3] += lo; t[4] += hi;
+	UMUL51(hi, lo, a[0], b[3]); t[3] += lo; t[4] += hi;
+
+	UMUL51(t[5], lo, a[4], b[0]); t[4] += lo;
+	UMUL51(hi, lo, a[3], b[1]); t[4] += lo; t[5] += hi;
+	UMUL51(hi, lo, a[2], b[2]); t[4] += lo; t[5] += hi;
+	UMUL51(hi, lo, a[1], b[3]); t[4] += lo; t[5] += hi;
+	UMUL51(hi, lo, a[0], b[4]); t[4] += lo; t[5] += hi;
+
+	UMUL51(t[6], lo, a[4], b[1]); t[5] += lo;
+	UMUL51(hi, lo, a[3], b[2]); t[5] += lo; t[6] += hi;
+	UMUL51(hi, lo, a[2], b[3]); t[5] += lo; t[6] += hi;
+	UMUL51(hi, lo, a[1], b[4]); t[5] += lo; t[6] += hi;
+
+	UMUL51(t[7], lo, a[4], b[2]); t[6] += lo;
+	UMUL51(hi, lo, a[3], b[3]); t[6] += lo; t[7] += hi;
+	UMUL51(hi, lo, a[2], b[4]); t[6] += lo; t[7] += hi;
+
+	UMUL51(t[8], lo, a[4], b[3]); t[7] += lo;
+	UMUL51(hi, lo, a[3], b[4]); t[7] += lo; t[8] += hi;
+
+	UMUL51(t[9], lo, a[4], b[4]); t[8] += lo;
+
+	/*
+	 * The upper words t[5]..t[9] are folded back into the lower
+	 * words, using the rule that 2^255 = 19 in the field.
+	 *
+	 * Since each t[i] is less than 324*2^51, the additions below
+	 * will yield less than 6480*2^51 in each limb; this fits in
+	 * 64 bits (6480*2^51 < 8192*2^51 = 2^64), hence there is
+	 * no overflow.
+	 */
+	t[0] += 19 * t[5];
+	t[1] += 19 * t[6];
+	t[2] += 19 * t[7];
+	t[3] += 19 * t[8];
+	t[4] += 19 * t[9];
+
+	/*
+	 * Propagate carries.
+	 */
+	w = t[0];
+	d[0] = w & MASK51;
+	cc = w >> 51;
+	w = t[1] + cc;
+	d[1] = w & MASK51;
+	cc = w >> 51;
+	w = t[2] + cc;
+	d[2] = w & MASK51;
+	cc = w >> 51;
+	w = t[3] + cc;
+	d[3] = w & MASK51;
+	cc = w >> 51;
+	w = t[4] + cc;
+	d[4] = w & MASK51;
+	cc = w >> 51;
+
+	/*
+	 * Since the limbs were 64-bit values, the top carry is at
+	 * most 8192 (in practice, that cannot be reached). We simply
+	 * performed a partial reduction.
+	 */
+	d[0] += 19 * cc;
+}
+
+/*
+ * Multiplication by A24 = 121665.
+ * Input must have limbs of 60 bits at most.
+ */
+static inline void
+f255_mul_a24(uint64_t *d, const uint64_t *a)
+{
+	uint64_t t[5], cc, w;
+
+	/*
+	 * 121665 = 15 * 8111. We first multiply by 15, with carry
+	 * propagation and partial reduction.
+	 */
+	w = a[0] * 15;
+	t[0] = w & MASK51;
+	cc = w >> 51;
+	w = a[1] * 15 + cc;
+	t[1] = w & MASK51;
+	cc = w >> 51;
+	w = a[2] * 15 + cc;
+	t[2] = w & MASK51;
+	cc = w >> 51;
+	w = a[3] * 15 + cc;
+	t[3] = w & MASK51;
+	cc = w >> 51;
+	w = a[4] * 15 + cc;
+	t[4] = w & MASK51;
+	t[0] += 19 * (w >> 51);
+
+	/*
+	 * Then multiplication by 8111. At that point, we known that
+	 * t[0] is less than 2^51 + 19*8192, and other limbs are less
+	 * than 2^51; thus, there will be no overflow.
+	 */
+	w = t[0] * 8111;
+	d[0] = w & MASK51;
+	cc = w >> 51;
+	w = t[1] * 8111 + cc;
+	d[1] = w & MASK51;
+	cc = w >> 51;
+	w = t[2] * 8111 + cc;
+	d[2] = w & MASK51;
+	cc = w >> 51;
+	w = t[3] * 8111 + cc;
+	d[3] = w & MASK51;
+	cc = w >> 51;
+	w = t[4] * 8111 + cc;
+	d[4] = w & MASK51;
+	d[0] += 19 * (w >> 51);
+}
+
+/*
+ * Finalize reduction.
+ * On input, limbs must fit on 51 bits, except possibly the low limb,
+ * which may be slightly above 2^51.
+ */
+static inline void
+f255_final_reduce(uint64_t *a)
+{
+	uint64_t t[5], cc, w;
+
+	/*
+	 * We add 19. If the result (in t[]) is below 2^255, then a[]
+	 * is already less than 2^255-19, thus already reduced.
+	 * Otherwise, we subtract 2^255 from t[], in which case we
+	 * have t = a - (2^255-19), and that's our result.
+	 */
+	w = a[0] + 19;
+	t[0] = w & MASK51;
+	cc = w >> 51;
+	w = a[1] + cc;
+	t[1] = w & MASK51;
+	cc = w >> 51;
+	w = a[2] + cc;
+	t[2] = w & MASK51;
+	cc = w >> 51;
+	w = a[3] + cc;
+	t[3] = w & MASK51;
+	cc = w >> 51;
+	w = a[4] + cc;
+	t[4] = w & MASK51;
+	cc = w >> 51;
+
+	/*
+	 * The bit 255 of t is in cc. If that bit is 0, when a[] must
+	 * be unchanged; otherwise, it must be replaced with t[].
+	 */
+	cc = -cc;
+	a[0] ^= cc & (a[0] ^ t[0]);
+	a[1] ^= cc & (a[1] ^ t[1]);
+	a[2] ^= cc & (a[2] ^ t[2]);
+	a[3] ^= cc & (a[3] ^ t[3]);
+	a[4] ^= cc & (a[4] ^ t[4]);
+}
+
+static uint32_t
+api_mul(unsigned char *G, size_t Glen,
+	const unsigned char *kb, size_t kblen, int curve)
+{
+	unsigned char k[32];
+	uint64_t x1[5], x2[5], z2[5], x3[5], z3[5];
+	uint32_t swap;
+	int i;
+
+	(void)curve;
+
+	/*
+	 * Points are encoded over exactly 32 bytes. Multipliers must fit
+	 * in 32 bytes as well.
+	 */
+	if (Glen != 32 || kblen > 32) {
+		return 0;
+	}
+
+	/*
+	 * RFC 7748 mandates that the high bit of the last point byte must
+	 * be ignored/cleared; the "& MASK51" in the initialization for
+	 * x1[4] clears that bit.
+	 */
+	x1[0] = br_dec64le(&G[0]) & MASK51;
+	x1[1] = (br_dec64le(&G[6]) >> 3) & MASK51;
+	x1[2] = (br_dec64le(&G[12]) >> 6) & MASK51;
+	x1[3] = (br_dec64le(&G[19]) >> 1) & MASK51;
+	x1[4] = (br_dec64le(&G[24]) >> 12) & MASK51;
+
+	/*
+	 * We can use memset() to clear values, because exact-width types
+	 * like uint64_t are guaranteed to have no padding bits or
+	 * trap representations.
+	 */
+	memset(x2, 0, sizeof x2);
+	x2[0] = 1;
+	memset(z2, 0, sizeof z2);
+	memcpy(x3, x1, sizeof x1);
+	memcpy(z3, x2, sizeof x2);
+
+	/*
+	 * The multiplier is provided in big-endian notation, and
+	 * possibly shorter than 32 bytes.
+	 */
+	memset(k, 0, (sizeof k) - kblen);
+	memcpy(k + (sizeof k) - kblen, kb, kblen);
+	k[31] &= 0xF8;
+	k[0] &= 0x7F;
+	k[0] |= 0x40;
+
+	swap = 0;
+
+	for (i = 254; i >= 0; i --) {
+		uint64_t a[5], aa[5], b[5], bb[5], e[5];
+		uint64_t c[5], d[5], da[5], cb[5];
+		uint32_t kt;
+
+		kt = (k[31 - (i >> 3)] >> (i & 7)) & 1;
+		swap ^= kt;
+		f255_cswap(x2, x3, swap);
+		f255_cswap(z2, z3, swap);
+		swap = kt;
+
+		/*
+		 * At that point, limbs of x_2 and z_2 are assumed to fit
+		 * on at most 52 bits each.
+		 *
+		 * Each f255_add() adds one bit to the maximum range of
+		 * the values, but f255_sub() and f255_mul() bring back
+		 * the limbs into 52 bits. All f255_add() outputs are
+		 * used only as inputs for f255_mul(), which ensures
+		 * that limbs remain in the proper range.
+		 */
+
+		/* A = x_2 + z_2   -- limbs fit on 53 bits each */
+		f255_add(a, x2, z2);
+
+		/* AA = A^2 */
+		f255_mul(aa, a, a);
+
+		/* B = x_2 - z_2 */
+		f255_sub(b, x2, z2);
+
+		/* BB = B^2 */
+		f255_mul(bb, b, b);
+
+		/* E = AA - BB */
+		f255_sub(e, aa, bb);
+
+		/* C = x_3 + z_3   -- limbs fit on 53 bits each */
+		f255_add(c, x3, z3);
+
+		/* D = x_3 - z_3 */
+		f255_sub(d, x3, z3);
+
+		/* DA = D * A */
+		f255_mul(da, d, a);
+
+		/* CB = C * B */
+		f255_mul(cb, c, b);
+
+		/* x_3 = (DA + CB)^2 */
+		f255_add(x3, da, cb);
+		f255_mul(x3, x3, x3);
+
+		/* z_3 = x_1 * (DA - CB)^2 */
+		f255_sub(z3, da, cb);
+		f255_mul(z3, z3, z3);
+		f255_mul(z3, x1, z3);
+
+		/* x_2 = AA * BB */
+		f255_mul(x2, aa, bb);
+
+		/* z_2 = E * (AA + a24 * E) */
+		f255_mul_a24(z2, e);
+		f255_add(z2, aa, z2);
+		f255_mul(z2, e, z2);
+	}
+
+	f255_cswap(x2, x3, swap);
+	f255_cswap(z2, z3, swap);
+
+	/*
+	 * Compute 1/z2 = z2^(p-2). Since p = 2^255-19, we can mutualize
+	 * most non-squarings. We use x1 and x3, now useless, as temporaries.
+	 */
+	memcpy(x1, z2, sizeof z2);
+	for (i = 0; i < 15; i ++) {
+		f255_mul(x1, x1, x1);
+		f255_mul(x1, x1, z2);
+	}
+	memcpy(x3, x1, sizeof x1);
+	for (i = 0; i < 14; i ++) {
+		int j;
+
+		for (j = 0; j < 16; j ++) {
+			f255_mul(x3, x3, x3);
+		}
+		f255_mul(x3, x3, x1);
+	}
+	for (i = 14; i >= 0; i --) {
+		f255_mul(x3, x3, x3);
+		if ((0xFFEB >> i) & 1) {
+			f255_mul(x3, z2, x3);
+		}
+	}
+
+	/*
+	 * Compute x2/z2. We have 1/z2 in x3.
+	 */
+	f255_mul(x2, x2, x3);
+	f255_final_reduce(x2);
+
+	/*
+	 * Encode the final x2 value in little-endian. We first assemble
+	 * the limbs into 64-bit values.
+	 */
+	x2[0] |= x2[1] << 51;
+	x2[1] = (x2[1] >> 13) | (x2[2] << 38);
+	x2[2] = (x2[2] >> 26) | (x2[3] << 25);
+	x2[3] = (x2[3] >> 39) | (x2[4] << 12);
+	br_enc64le(G, x2[0]);
+	br_enc64le(G + 8, x2[1]);
+	br_enc64le(G + 16, x2[2]);
+	br_enc64le(G + 24, x2[3]);
+	return 1;
+}
+
+static size_t
+api_mulgen(unsigned char *R,
+	const unsigned char *x, size_t xlen, int curve)
+{
+	const unsigned char *G;
+	size_t Glen;
+
+	G = api_generator(curve, &Glen);
+	memcpy(R, G, Glen);
+	api_mul(R, Glen, x, xlen, curve);
+	return Glen;
+}
+
+static uint32_t
+api_muladd(unsigned char *A, const unsigned char *B, size_t len,
+	const unsigned char *x, size_t xlen,
+	const unsigned char *y, size_t ylen, int curve)
+{
+	/*
+	 * We don't implement this method, since it is used for ECDSA
+	 * only, and there is no ECDSA over Curve25519 (which instead
+	 * uses EdDSA).
+	 */
+	(void)A;
+	(void)B;
+	(void)len;
+	(void)x;
+	(void)xlen;
+	(void)y;
+	(void)ylen;
+	(void)curve;
+	return 0;
+}
+
+/* see bearssl_ec.h */
+const br_ec_impl br_ec_c25519_m62 = {
+	(uint32_t)0x20000000,
+	&api_generator,
+	&api_order,
+	&api_xoff,
+	&api_mul,
+	&api_mulgen,
+	&api_muladd
+};
+
+/* see bearssl_ec.h */
+const br_ec_impl *
+br_ec_c25519_m62_get(void)
+{
+	return &br_ec_c25519_m62;
+}
+
+#else
+
+/* see bearssl_ec.h */
+const br_ec_impl *
+br_ec_c25519_m62_get(void)
+{
+	return 0;
+}
+
+#endif