summary refs log tree commit diff
path: root/third_party/bearssl/src/ec_c25519_m31.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/bearssl/src/ec_c25519_m31.c')
-rw-r--r--third_party/bearssl/src/ec_c25519_m31.c800
1 files changed, 800 insertions, 0 deletions
diff --git a/third_party/bearssl/src/ec_c25519_m31.c b/third_party/bearssl/src/ec_c25519_m31.c
new file mode 100644
index 0000000..1dd6d51
--- /dev/null
+++ b/third_party/bearssl/src/ec_c25519_m31.c
@@ -0,0 +1,800 @@
+/*
+ * Copyright (c) 2017 Thomas Pornin <[email protected]>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining 
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be 
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "inner.h"
+
+/* obsolete
+#include <stdio.h>
+#include <stdlib.h>
+static void
+print_int(const char *name, const uint32_t *x)
+{
+	size_t u;
+	unsigned char tmp[40];
+
+	printf("%s = ", name);
+	for (u = 0; u < 9; u ++) {
+		if (x[u] > 0x3FFFFFFF) {
+			printf("INVALID:");
+			for (u = 0; u < 9; u ++) {
+				printf(" %08X", x[u]);
+			}
+			printf("\n");
+			return;
+		}
+	}
+	memset(tmp, 0, sizeof tmp);
+	for (u = 0; u < 9; u ++) {
+		uint64_t w;
+		int j, k;
+
+		w = x[u];
+		j = 30 * (int)u;
+		k = j & 7;
+		if (k != 0) {
+			w <<= k;
+			j -= k;
+		}
+		k = j >> 3;
+		for (j = 0; j < 8; j ++) {
+			tmp[39 - k - j] |= (unsigned char)w;
+			w >>= 8;
+		}
+	}
+	for (u = 8; u < 40; u ++) {
+		printf("%02X", tmp[u]);
+	}
+	printf("\n");
+}
+*/
+
+/*
+ * If BR_NO_ARITH_SHIFT is undefined, or defined to 0, then we _assume_
+ * that right-shifting a signed negative integer copies the sign bit
+ * (arithmetic right-shift). This is "implementation-defined behaviour",
+ * i.e. it is not undefined, but it may differ between compilers. Each
+ * compiler is supposed to document its behaviour in that respect. GCC
+ * explicitly defines that an arithmetic right shift is used. We expect
+ * all other compilers to do the same, because underlying CPU offer an
+ * arithmetic right shift opcode that could not be used otherwise.
+ */
+#if BR_NO_ARITH_SHIFT
+#define ARSH(x, n)   (((uint32_t)(x) >> (n)) \
+                    | ((-((uint32_t)(x) >> 31)) << (32 - (n))))
+#else
+#define ARSH(x, n)   ((*(int32_t *)&(x)) >> (n))
+#endif
+
+/*
+ * Convert an integer from unsigned little-endian encoding to a sequence of
+ * 30-bit words in little-endian order. The final "partial" word is
+ * returned.
+ */
+static uint32_t
+le8_to_le30(uint32_t *dst, const unsigned char *src, size_t len)
+{
+	uint32_t acc;
+	int acc_len;
+
+	acc = 0;
+	acc_len = 0;
+	while (len -- > 0) {
+		uint32_t b;
+
+		b = *src ++;
+		if (acc_len < 22) {
+			acc |= b << acc_len;
+			acc_len += 8;
+		} else {
+			*dst ++ = (acc | (b << acc_len)) & 0x3FFFFFFF;
+			acc = b >> (30 - acc_len);
+			acc_len -= 22;
+		}
+	}
+	return acc;
+}
+
+/*
+ * Convert an integer (30-bit words, little-endian) to unsigned
+ * little-endian encoding. The total encoding length is provided; all
+ * the destination bytes will be filled.
+ */
+static void
+le30_to_le8(unsigned char *dst, size_t len, const uint32_t *src)
+{
+	uint32_t acc;
+	int acc_len;
+
+	acc = 0;
+	acc_len = 0;
+	while (len -- > 0) {
+		if (acc_len < 8) {
+			uint32_t w;
+
+			w = *src ++;
+			*dst ++ = (unsigned char)(acc | (w << acc_len));
+			acc = w >> (8 - acc_len);
+			acc_len += 22;
+		} else {
+			*dst ++ = (unsigned char)acc;
+			acc >>= 8;
+			acc_len -= 8;
+		}
+	}
+}
+
+/*
+ * Multiply two integers. Source integers are represented as arrays of
+ * nine 30-bit words, for values up to 2^270-1. Result is encoded over
+ * 18 words of 30 bits each.
+ */
+static void
+mul9(uint32_t *d, const uint32_t *a, const uint32_t *b)
+{
+	/*
+	 * Maximum intermediate result is no more than
+	 * 10376293531797946367, which fits in 64 bits. Reason:
+	 *
+	 *   10376293531797946367 = 9 * (2^30-1)^2 + 9663676406
+	 *   10376293531797946367 < 9663676407 * 2^30
+	 *
+	 * Thus, adding together 9 products of 30-bit integers, with
+	 * a carry of at most 9663676406, yields an integer that fits
+	 * on 64 bits and generates a carry of at most 9663676406.
+	 */
+	uint64_t t[17];
+	uint64_t cc;
+	int i;
+
+	t[ 0] = MUL31(a[0], b[0]);
+	t[ 1] = MUL31(a[0], b[1])
+		+ MUL31(a[1], b[0]);
+	t[ 2] = MUL31(a[0], b[2])
+		+ MUL31(a[1], b[1])
+		+ MUL31(a[2], b[0]);
+	t[ 3] = MUL31(a[0], b[3])
+		+ MUL31(a[1], b[2])
+		+ MUL31(a[2], b[1])
+		+ MUL31(a[3], b[0]);
+	t[ 4] = MUL31(a[0], b[4])
+		+ MUL31(a[1], b[3])
+		+ MUL31(a[2], b[2])
+		+ MUL31(a[3], b[1])
+		+ MUL31(a[4], b[0]);
+	t[ 5] = MUL31(a[0], b[5])
+		+ MUL31(a[1], b[4])
+		+ MUL31(a[2], b[3])
+		+ MUL31(a[3], b[2])
+		+ MUL31(a[4], b[1])
+		+ MUL31(a[5], b[0]);
+	t[ 6] = MUL31(a[0], b[6])
+		+ MUL31(a[1], b[5])
+		+ MUL31(a[2], b[4])
+		+ MUL31(a[3], b[3])
+		+ MUL31(a[4], b[2])
+		+ MUL31(a[5], b[1])
+		+ MUL31(a[6], b[0]);
+	t[ 7] = MUL31(a[0], b[7])
+		+ MUL31(a[1], b[6])
+		+ MUL31(a[2], b[5])
+		+ MUL31(a[3], b[4])
+		+ MUL31(a[4], b[3])
+		+ MUL31(a[5], b[2])
+		+ MUL31(a[6], b[1])
+		+ MUL31(a[7], b[0]);
+	t[ 8] = MUL31(a[0], b[8])
+		+ MUL31(a[1], b[7])
+		+ MUL31(a[2], b[6])
+		+ MUL31(a[3], b[5])
+		+ MUL31(a[4], b[4])
+		+ MUL31(a[5], b[3])
+		+ MUL31(a[6], b[2])
+		+ MUL31(a[7], b[1])
+		+ MUL31(a[8], b[0]);
+	t[ 9] = MUL31(a[1], b[8])
+		+ MUL31(a[2], b[7])
+		+ MUL31(a[3], b[6])
+		+ MUL31(a[4], b[5])
+		+ MUL31(a[5], b[4])
+		+ MUL31(a[6], b[3])
+		+ MUL31(a[7], b[2])
+		+ MUL31(a[8], b[1]);
+	t[10] = MUL31(a[2], b[8])
+		+ MUL31(a[3], b[7])
+		+ MUL31(a[4], b[6])
+		+ MUL31(a[5], b[5])
+		+ MUL31(a[6], b[4])
+		+ MUL31(a[7], b[3])
+		+ MUL31(a[8], b[2]);
+	t[11] = MUL31(a[3], b[8])
+		+ MUL31(a[4], b[7])
+		+ MUL31(a[5], b[6])
+		+ MUL31(a[6], b[5])
+		+ MUL31(a[7], b[4])
+		+ MUL31(a[8], b[3]);
+	t[12] = MUL31(a[4], b[8])
+		+ MUL31(a[5], b[7])
+		+ MUL31(a[6], b[6])
+		+ MUL31(a[7], b[5])
+		+ MUL31(a[8], b[4]);
+	t[13] = MUL31(a[5], b[8])
+		+ MUL31(a[6], b[7])
+		+ MUL31(a[7], b[6])
+		+ MUL31(a[8], b[5]);
+	t[14] = MUL31(a[6], b[8])
+		+ MUL31(a[7], b[7])
+		+ MUL31(a[8], b[6]);
+	t[15] = MUL31(a[7], b[8])
+		+ MUL31(a[8], b[7]);
+	t[16] = MUL31(a[8], b[8]);
+
+	/*
+	 * Propagate carries.
+	 */
+	cc = 0;
+	for (i = 0; i < 17; i ++) {
+		uint64_t w;
+
+		w = t[i] + cc;
+		d[i] = (uint32_t)w & 0x3FFFFFFF;
+		cc = w >> 30;
+	}
+	d[17] = (uint32_t)cc;
+}
+
+/*
+ * Square a 270-bit integer, represented as an array of nine 30-bit words.
+ * Result uses 18 words of 30 bits each.
+ */
+static void
+square9(uint32_t *d, const uint32_t *a)
+{
+	uint64_t t[17];
+	uint64_t cc;
+	int i;
+
+	t[ 0] = MUL31(a[0], a[0]);
+	t[ 1] = ((MUL31(a[0], a[1])) << 1);
+	t[ 2] = MUL31(a[1], a[1])
+		+ ((MUL31(a[0], a[2])) << 1);
+	t[ 3] = ((MUL31(a[0], a[3])
+		+ MUL31(a[1], a[2])) << 1);
+	t[ 4] = MUL31(a[2], a[2])
+		+ ((MUL31(a[0], a[4])
+		+ MUL31(a[1], a[3])) << 1);
+	t[ 5] = ((MUL31(a[0], a[5])
+		+ MUL31(a[1], a[4])
+		+ MUL31(a[2], a[3])) << 1);
+	t[ 6] = MUL31(a[3], a[3])
+		+ ((MUL31(a[0], a[6])
+		+ MUL31(a[1], a[5])
+		+ MUL31(a[2], a[4])) << 1);
+	t[ 7] = ((MUL31(a[0], a[7])
+		+ MUL31(a[1], a[6])
+		+ MUL31(a[2], a[5])
+		+ MUL31(a[3], a[4])) << 1);
+	t[ 8] = MUL31(a[4], a[4])
+		+ ((MUL31(a[0], a[8])
+		+ MUL31(a[1], a[7])
+		+ MUL31(a[2], a[6])
+		+ MUL31(a[3], a[5])) << 1);
+	t[ 9] = ((MUL31(a[1], a[8])
+		+ MUL31(a[2], a[7])
+		+ MUL31(a[3], a[6])
+		+ MUL31(a[4], a[5])) << 1);
+	t[10] = MUL31(a[5], a[5])
+		+ ((MUL31(a[2], a[8])
+		+ MUL31(a[3], a[7])
+		+ MUL31(a[4], a[6])) << 1);
+	t[11] = ((MUL31(a[3], a[8])
+		+ MUL31(a[4], a[7])
+		+ MUL31(a[5], a[6])) << 1);
+	t[12] = MUL31(a[6], a[6])
+		+ ((MUL31(a[4], a[8])
+		+ MUL31(a[5], a[7])) << 1);
+	t[13] = ((MUL31(a[5], a[8])
+		+ MUL31(a[6], a[7])) << 1);
+	t[14] = MUL31(a[7], a[7])
+		+ ((MUL31(a[6], a[8])) << 1);
+	t[15] = ((MUL31(a[7], a[8])) << 1);
+	t[16] = MUL31(a[8], a[8]);
+
+	/*
+	 * Propagate carries.
+	 */
+	cc = 0;
+	for (i = 0; i < 17; i ++) {
+		uint64_t w;
+
+		w = t[i] + cc;
+		d[i] = (uint32_t)w & 0x3FFFFFFF;
+		cc = w >> 30;
+	}
+	d[17] = (uint32_t)cc;
+}
+
+/*
+ * Perform a "final reduction" in field F255 (field for Curve25519)
+ * The source value must be less than twice the modulus. If the value
+ * is not lower than the modulus, then the modulus is subtracted and
+ * this function returns 1; otherwise, it leaves it untouched and it
+ * returns 0.
+ */
+static uint32_t
+reduce_final_f255(uint32_t *d)
+{
+	uint32_t t[9];
+	uint32_t cc;
+	int i;
+
+	memcpy(t, d, sizeof t);
+	cc = 19;
+	for (i = 0; i < 9; i ++) {
+		uint32_t w;
+
+		w = t[i] + cc;
+		cc = w >> 30;
+		t[i] = w & 0x3FFFFFFF;
+	}
+	cc = t[8] >> 15;
+	t[8] &= 0x7FFF;
+	CCOPY(cc, d, t, sizeof t);
+	return cc;
+}
+
+/*
+ * Perform a multiplication of two integers modulo 2^255-19.
+ * Operands are arrays of 9 words, each containing 30 bits of data, in
+ * little-endian order. Input value may be up to 2^256-1; on output, value
+ * fits on 256 bits and is lower than twice the modulus.
+ */
+static void
+f255_mul(uint32_t *d, const uint32_t *a, const uint32_t *b)
+{
+	uint32_t t[18], cc;
+	int i;
+
+	/*
+	 * Compute raw multiplication. All result words fit in 30 bits
+	 * each; upper word (t[17]) must fit on 2 bits, since the product
+	 * of two 256-bit integers must fit on 512 bits.
+	 */
+	mul9(t, a, b);
+
+	/*
+	 * Modular reduction: each high word is added where necessary.
+	 * Since the modulus is 2^255-19 and word 9 corresponds to
+	 * offset 9*30 = 270, word 9+k must be added to word k with
+	 * a factor of 19*2^15 = 622592. The extra bits in word 8 are also
+	 * added that way.
+	 *
+	 * Keeping the carry on 32 bits helps with 32-bit architectures,
+	 * and does not noticeably impact performance on 64-bit systems.
+	 */
+	cc = MUL15(t[8] >> 15, 19);  /* at most 19*(2^15-1) = 622573 */
+	t[8] &= 0x7FFF;
+	for (i = 0; i < 9; i ++) {
+		uint64_t w;
+
+		w = (uint64_t)t[i] + (uint64_t)cc + MUL31(t[i + 9], 622592);
+		t[i] = (uint32_t)w & 0x3FFFFFFF;
+		cc = (uint32_t)(w >> 30);  /* at most 622592 */
+	}
+
+	/*
+	 * Original product was up to (2^256-1)^2, i.e. a 512-bit integer.
+	 * This was split into two parts (upper of 257 bits, lower of 255
+	 * bits), and the upper was added to the lower with a factor 19,
+	 * which means that the intermediate value is less than 77*2^255
+	 * (19*2^257 + 2^255). Therefore, the extra bits "t[8] >> 15" are
+	 * less than 77, and the initial carry cc is at most 76*19 = 1444.
+	 */
+	cc = MUL15(t[8] >> 15, 19);
+	t[8] &= 0x7FFF;
+	for (i = 0; i < 9; i ++) {
+		uint32_t z;
+
+		z = t[i] + cc;
+		d[i] = z & 0x3FFFFFFF;
+		cc = z >> 30;
+	}
+
+	/*
+	 * Final result is at most 2^255 + 1443. In particular, the last
+	 * carry is necessarily 0, since t[8] was truncated to 15 bits.
+	 */
+}
+
+/*
+ * Perform a squaring of an integer modulo 2^255-19.
+ * Operands are arrays of 9 words, each containing 30 bits of data, in
+ * little-endian order. Input value may be up to 2^256-1; on output, value
+ * fits on 256 bits and is lower than twice the modulus.
+ */
+static void
+f255_square(uint32_t *d, const uint32_t *a)
+{
+	uint32_t t[18], cc;
+	int i;
+
+	/*
+	 * Compute raw squaring. All result words fit in 30 bits
+	 * each; upper word (t[17]) must fit on 2 bits, since the square
+	 * of a 256-bit integers must fit on 512 bits.
+	 */
+	square9(t, a);
+
+	/*
+	 * Modular reduction: each high word is added where necessary.
+	 * See f255_mul() for details on the reduction and carry limits.
+	 */
+	cc = MUL15(t[8] >> 15, 19);
+	t[8] &= 0x7FFF;
+	for (i = 0; i < 9; i ++) {
+		uint64_t w;
+
+		w = (uint64_t)t[i] + (uint64_t)cc + MUL31(t[i + 9], 622592);
+		t[i] = (uint32_t)w & 0x3FFFFFFF;
+		cc = (uint32_t)(w >> 30);
+	}
+	cc = MUL15(t[8] >> 15, 19);
+	t[8] &= 0x7FFF;
+	for (i = 0; i < 9; i ++) {
+		uint32_t z;
+
+		z = t[i] + cc;
+		d[i] = z & 0x3FFFFFFF;
+		cc = z >> 30;
+	}
+}
+
+/*
+ * Add two values in F255. Partial reduction is performed (down to less
+ * than twice the modulus).
+ */
+static void
+f255_add(uint32_t *d, const uint32_t *a, const uint32_t *b)
+{
+	/*
+	 * Since operand words fit on 30 bits, we can use 32-bit
+	 * variables throughout.
+	 */
+	int i;
+	uint32_t cc, w;
+
+	cc = 0;
+	for (i = 0; i < 9; i ++) {
+		w = a[i] + b[i] + cc;
+		d[i] = w & 0x3FFFFFFF;
+		cc = w >> 30;
+	}
+	cc = MUL15(w >> 15, 19);
+	d[8] &= 0x7FFF;
+	for (i = 0; i < 9; i ++) {
+		w = d[i] + cc;
+		d[i] = w & 0x3FFFFFFF;
+		cc = w >> 30;
+	}
+}
+
+/*
+ * Subtract one value from another in F255. Partial reduction is
+ * performed (down to less than twice the modulus).
+ */
+static void
+f255_sub(uint32_t *d, const uint32_t *a, const uint32_t *b)
+{
+	/*
+	 * We actually compute a - b + 2*p, so that the final value is
+	 * necessarily positive.
+	 */
+	int i;
+	uint32_t cc, w;
+
+	cc = (uint32_t)-38;
+	for (i = 0; i < 9; i ++) {
+		w = a[i] - b[i] + cc;
+		d[i] = w & 0x3FFFFFFF;
+		cc = ARSH(w, 30);
+	}
+	cc = MUL15((w + 0x10000) >> 15, 19);
+	d[8] &= 0x7FFF;
+	for (i = 0; i < 9; i ++) {
+		w = d[i] + cc;
+		d[i] = w & 0x3FFFFFFF;
+		cc = w >> 30;
+	}
+}
+
+/*
+ * Multiply an integer by the 'A24' constant (121665). Partial reduction
+ * is performed (down to less than twice the modulus).
+ */
+static void
+f255_mul_a24(uint32_t *d, const uint32_t *a)
+{
+	int i;
+	uint64_t w;
+	uint32_t cc;
+
+	/*
+	 * a[] is over 256 bits, thus a[8] has length at most 16 bits.
+	 * We single out the processing of the last word: intermediate
+	 * value w is up to 121665*2^16, yielding a carry for the next
+	 * loop of at most 19*(121665*2^16/2^15) = 4623289.
+	 */
+	cc = 0;
+	for (i = 0; i < 8; i ++) {
+		w = MUL31(a[i], 121665) + (uint64_t)cc;
+		d[i] = (uint32_t)w & 0x3FFFFFFF;
+		cc = (uint32_t)(w >> 30);
+	}
+	w = MUL31(a[8], 121665) + (uint64_t)cc;
+	d[8] = (uint32_t)w & 0x7FFF;
+	cc = MUL15((uint32_t)(w >> 15), 19);
+
+	for (i = 0; i < 9; i ++) {
+		uint32_t z;
+
+		z = d[i] + cc;
+		d[i] = z & 0x3FFFFFFF;
+		cc = z >> 30;
+	}
+}
+
+static const unsigned char GEN[] = {
+	0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
+};
+
+static const unsigned char ORDER[] = {
+	0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
+};
+
+static const unsigned char *
+api_generator(int curve, size_t *len)
+{
+	(void)curve;
+	*len = 32;
+	return GEN;
+}
+
+static const unsigned char *
+api_order(int curve, size_t *len)
+{
+	(void)curve;
+	*len = 32;
+	return ORDER;
+}
+
+static size_t
+api_xoff(int curve, size_t *len)
+{
+	(void)curve;
+	*len = 32;
+	return 0;
+}
+
+static void
+cswap(uint32_t *a, uint32_t *b, uint32_t ctl)
+{
+	int i;
+
+	ctl = -ctl;
+	for (i = 0; i < 9; i ++) {
+		uint32_t aw, bw, tw;
+
+		aw = a[i];
+		bw = b[i];
+		tw = ctl & (aw ^ bw);
+		a[i] = aw ^ tw;
+		b[i] = bw ^ tw;
+	}
+}
+
+static uint32_t
+api_mul(unsigned char *G, size_t Glen,
+	const unsigned char *kb, size_t kblen, int curve)
+{
+	uint32_t x1[9], x2[9], x3[9], z2[9], z3[9];
+	uint32_t a[9], aa[9], b[9], bb[9];
+	uint32_t c[9], d[9], e[9], da[9], cb[9];
+	unsigned char k[32];
+	uint32_t swap;
+	int i;
+
+	(void)curve;
+
+	/*
+	 * Points are encoded over exactly 32 bytes. Multipliers must fit
+	 * in 32 bytes as well.
+	 * RFC 7748 mandates that the high bit of the last point byte must
+	 * be ignored/cleared.
+	 */
+	if (Glen != 32 || kblen > 32) {
+		return 0;
+	}
+	G[31] &= 0x7F;
+
+	/*
+	 * Initialise variables x1, x2, z2, x3 and z3. We set all of them
+	 * into Montgomery representation.
+	 */
+	x1[8] = le8_to_le30(x1, G, 32);
+	memcpy(x3, x1, sizeof x1);
+	memset(z2, 0, sizeof z2);
+	memset(x2, 0, sizeof x2);
+	x2[0] = 1;
+	memset(z3, 0, sizeof z3);
+	z3[0] = 1;
+
+	memset(k, 0, (sizeof k) - kblen);
+	memcpy(k + (sizeof k) - kblen, kb, kblen);
+	k[31] &= 0xF8;
+	k[0] &= 0x7F;
+	k[0] |= 0x40;
+
+	/* obsolete
+	print_int("x1", x1);
+	*/
+
+	swap = 0;
+	for (i = 254; i >= 0; i --) {
+		uint32_t kt;
+
+		kt = (k[31 - (i >> 3)] >> (i & 7)) & 1;
+		swap ^= kt;
+		cswap(x2, x3, swap);
+		cswap(z2, z3, swap);
+		swap = kt;
+
+		/* obsolete
+		print_int("x2", x2);
+		print_int("z2", z2);
+		print_int("x3", x3);
+		print_int("z3", z3);
+		*/
+
+		f255_add(a, x2, z2);
+		f255_square(aa, a);
+		f255_sub(b, x2, z2);
+		f255_square(bb, b);
+		f255_sub(e, aa, bb);
+		f255_add(c, x3, z3);
+		f255_sub(d, x3, z3);
+		f255_mul(da, d, a);
+		f255_mul(cb, c, b);
+
+		/* obsolete
+		print_int("a ", a);
+		print_int("aa", aa);
+		print_int("b ", b);
+		print_int("bb", bb);
+		print_int("e ", e);
+		print_int("c ", c);
+		print_int("d ", d);
+		print_int("da", da);
+		print_int("cb", cb);
+		*/
+
+		f255_add(x3, da, cb);
+		f255_square(x3, x3);
+		f255_sub(z3, da, cb);
+		f255_square(z3, z3);
+		f255_mul(z3, z3, x1);
+		f255_mul(x2, aa, bb);
+		f255_mul_a24(z2, e);
+		f255_add(z2, z2, aa);
+		f255_mul(z2, e, z2);
+
+		/* obsolete
+		print_int("x2", x2);
+		print_int("z2", z2);
+		print_int("x3", x3);
+		print_int("z3", z3);
+		*/
+	}
+	cswap(x2, x3, swap);
+	cswap(z2, z3, swap);
+
+	/*
+	 * Inverse z2 with a modular exponentiation. This is a simple
+	 * square-and-multiply algorithm; we mutualise most non-squarings
+	 * since the exponent contains almost only ones.
+	 */
+	memcpy(a, z2, sizeof z2);
+	for (i = 0; i < 15; i ++) {
+		f255_square(a, a);
+		f255_mul(a, a, z2);
+	}
+	memcpy(b, a, sizeof a);
+	for (i = 0; i < 14; i ++) {
+		int j;
+
+		for (j = 0; j < 16; j ++) {
+			f255_square(b, b);
+		}
+		f255_mul(b, b, a);
+	}
+	for (i = 14; i >= 0; i --) {
+		f255_square(b, b);
+		if ((0xFFEB >> i) & 1) {
+			f255_mul(b, z2, b);
+		}
+	}
+	f255_mul(x2, x2, b);
+	reduce_final_f255(x2);
+	le30_to_le8(G, 32, x2);
+	return 1;
+}
+
+static size_t
+api_mulgen(unsigned char *R,
+	const unsigned char *x, size_t xlen, int curve)
+{
+	const unsigned char *G;
+	size_t Glen;
+
+	G = api_generator(curve, &Glen);
+	memcpy(R, G, Glen);
+	api_mul(R, Glen, x, xlen, curve);
+	return Glen;
+}
+
+static uint32_t
+api_muladd(unsigned char *A, const unsigned char *B, size_t len,
+	const unsigned char *x, size_t xlen,
+	const unsigned char *y, size_t ylen, int curve)
+{
+	/*
+	 * We don't implement this method, since it is used for ECDSA
+	 * only, and there is no ECDSA over Curve25519 (which instead
+	 * uses EdDSA).
+	 */
+	(void)A;
+	(void)B;
+	(void)len;
+	(void)x;
+	(void)xlen;
+	(void)y;
+	(void)ylen;
+	(void)curve;
+	return 0;
+}
+
+/* see bearssl_ec.h */
+const br_ec_impl br_ec_c25519_m31 = {
+	(uint32_t)0x20000000,
+	&api_generator,
+	&api_order,
+	&api_xoff,
+	&api_mul,
+	&api_mulgen,
+	&api_muladd
+};