diff options
Diffstat (limited to 'third_party/bearssl/inc/bearssl_hash.h')
-rw-r--r-- | third_party/bearssl/inc/bearssl_hash.h | 1346 |
1 files changed, 1346 insertions, 0 deletions
diff --git a/third_party/bearssl/inc/bearssl_hash.h b/third_party/bearssl/inc/bearssl_hash.h new file mode 100644 index 0000000..ca4fa26 --- /dev/null +++ b/third_party/bearssl/inc/bearssl_hash.h @@ -0,0 +1,1346 @@ +/* + * Copyright (c) 2016 Thomas Pornin <[email protected]> + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#ifndef BR_BEARSSL_HASH_H__ +#define BR_BEARSSL_HASH_H__ + +#include <stddef.h> +#include <stdint.h> +#include <string.h> + +#ifdef __cplusplus +extern "C" { +#endif + +/** \file bearssl_hash.h + * + * # Hash Functions + * + * This file documents the API for hash functions. + * + * + * ## Procedural API + * + * For each implemented hash function, of name "`xxx`", the following + * elements are defined: + * + * - `br_xxx_vtable` + * + * An externally defined instance of `br_hash_class`. + * + * - `br_xxx_SIZE` + * + * A macro that evaluates to the output size (in bytes) of the + * hash function. + * + * - `br_xxx_ID` + * + * A macro that evaluates to a symbolic identifier for the hash + * function. Such identifiers are used with HMAC and signature + * algorithm implementations. + * + * NOTE: for the "standard" hash functions defined in [the TLS + * standard](https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1), + * the symbolic identifiers match the constants used in TLS, i.e. + * 1 to 6 for MD5, SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512, + * respectively. + * + * - `br_xxx_context` + * + * Context for an ongoing computation. It is allocated by the + * caller, and a pointer to it is passed to all functions. A + * context contains no interior pointer, so it can be moved around + * and cloned (with a simple `memcpy()` or equivalent) in order to + * capture the function state at some point. Computations that use + * distinct context structures are independent of each other. The + * first field of `br_xxx_context` is always a pointer to the + * `br_xxx_vtable` structure; `br_xxx_init()` sets that pointer. + * + * - `br_xxx_init(br_xxx_context *ctx)` + * + * Initialise the provided context. Previous contents of the structure + * are ignored. This calls resets the context to the start of a new + * hash computation; it also sets the first field of the context + * structure (called `vtable`) to a pointer to the statically + * allocated constant `br_xxx_vtable` structure. + * + * - `br_xxx_update(br_xxx_context *ctx, const void *data, size_t len)` + * + * Add some more bytes to the hash computation represented by the + * provided context. + * + * - `br_xxx_out(const br_xxx_context *ctx, void *out)` + * + * Complete the hash computation and write the result in the provided + * buffer. The output buffer MUST be large enough to accommodate the + * result. The context is NOT modified by this operation, so this + * function can be used to get a "partial hash" while still keeping + * the possibility of adding more bytes to the input. + * + * - `br_xxx_state(const br_xxx_context *ctx, void *out)` + * + * Get a copy of the "current state" for the computation so far. For + * MD functions (MD5, SHA-1, SHA-2 family), this is the running state + * resulting from the processing of the last complete input block. + * Returned value is the current input length (in bytes). + * + * - `br_xxx_set_state(br_xxx_context *ctx, const void *stb, uint64_t count)` + * + * Set the internal state to the provided values. The 'stb' and + * 'count' values shall match that which was obtained from + * `br_xxx_state()`. This restores the hash state only if the state + * values were at an appropriate block boundary. This does NOT set + * the `vtable` pointer in the context. + * + * Context structures can be discarded without any explicit deallocation. + * Hash function implementations are purely software and don't reserve + * any resources outside of the context structure itself. + * + * + * ## Object-Oriented API + * + * For each hash function that follows the procedural API described + * above, an object-oriented API is also provided. In that API, function + * pointers from the vtable (`br_xxx_vtable`) are used. The vtable + * incarnates object-oriented programming. An introduction on the OOP + * concept used here can be read on the BearSSL Web site:<br /> + * [https://www.bearssl.org/oop.html](https://www.bearssl.org/oop.html) + * + * The vtable offers functions called `init()`, `update()`, `out()`, + * `set()` and `set_state()`, which are in fact the functions from + * the procedural API. That vtable also contains two informative fields: + * + * - `context_size` + * + * The size of the context structure (`br_xxx_context`), in bytes. + * This can be used by generic implementations to perform dynamic + * context allocation. + * + * - `desc` + * + * A "descriptor" field that encodes some information on the hash + * function: symbolic identifier, output size, state size, + * internal block size, details on the padding. + * + * Users of this object-oriented API (in particular generic HMAC + * implementations) may make the following assumptions: + * + * - Hash output size is no more than 64 bytes. + * - Hash internal state size is no more than 64 bytes. + * - Internal block size is a power of two, no less than 16 and no more + * than 256. + * + * + * ## Implemented Hash Functions + * + * Implemented hash functions are: + * + * | Function | Name | Output length | State length | + * | :-------- | :------ | :-----------: | :----------: | + * | MD5 | md5 | 16 | 16 | + * | SHA-1 | sha1 | 20 | 20 | + * | SHA-224 | sha224 | 28 | 32 | + * | SHA-256 | sha256 | 32 | 32 | + * | SHA-384 | sha384 | 48 | 64 | + * | SHA-512 | sha512 | 64 | 64 | + * | MD5+SHA-1 | md5sha1 | 36 | 36 | + * + * (MD5+SHA-1 is the concatenation of MD5 and SHA-1 computed over the + * same input; in the implementation, the internal data buffer is + * shared, thus making it more memory-efficient than separate MD5 and + * SHA-1. It can be useful in implementing SSL 3.0, TLS 1.0 and TLS + * 1.1.) + * + * + * ## Multi-Hasher + * + * An aggregate hasher is provided, that can compute several standard + * hash functions in parallel. It uses `br_multihash_context` and a + * procedural API. It is configured with the implementations (the vtables) + * that it should use; it will then compute all these hash functions in + * parallel, on the same input. It is meant to be used in cases when the + * hash of an object will be used, but the exact hash function is not + * known yet (typically, streamed processing on X.509 certificates). + * + * Only the standard hash functions (MD5, SHA-1, SHA-224, SHA-256, SHA-384 + * and SHA-512) are supported by the multi-hasher. + * + * + * ## GHASH + * + * GHASH is not a generic hash function; it is a _universal_ hash function, + * which, as the name does not say, means that it CANNOT be used in most + * places where a hash function is needed. GHASH is used within the GCM + * encryption mode, to provide the checked integrity functionality. + * + * A GHASH implementation is basically a function that uses the type defined + * in this file under the name `br_ghash`: + * + * typedef void (*br_ghash)(void *y, const void *h, const void *data, size_t len); + * + * The `y` pointer refers to a 16-byte value which is used as input, and + * receives the output of the GHASH invocation. `h` is a 16-byte secret + * value (that serves as key). `data` and `len` define the input data. + * + * Three GHASH implementations are provided, all constant-time, based on + * the use of integer multiplications with appropriate masking to cancel + * carry propagation. + */ + +/** + * \brief Class type for hash function implementations. + * + * A `br_hash_class` instance references the methods implementing a hash + * function. Constant instances of this structure are defined for each + * implemented hash function. Such instances are also called "vtables". + * + * Vtables are used to support object-oriented programming, as + * described on [the BearSSL Web site](https://www.bearssl.org/oop.html). + */ +typedef struct br_hash_class_ br_hash_class; +struct br_hash_class_ { + /** + * \brief Size (in bytes) of the context structure appropriate for + * computing this hash function. + */ + size_t context_size; + + /** + * \brief Descriptor word that contains information about the hash + * function. + * + * For each word `xxx` described below, use `BR_HASHDESC_xxx_OFF` + * and `BR_HASHDESC_xxx_MASK` to access the specific value, as + * follows: + * + * (hf->desc >> BR_HASHDESC_xxx_OFF) & BR_HASHDESC_xxx_MASK + * + * The defined elements are: + * + * - `ID`: the symbolic identifier for the function, as defined + * in [TLS](https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1) + * (MD5 = 1, SHA-1 = 2,...). + * + * - `OUT`: hash output size, in bytes. + * + * - `STATE`: internal running state size, in bytes. + * + * - `LBLEN`: base-2 logarithm for the internal block size, as + * defined for HMAC processing (this is 6 for MD5, SHA-1, SHA-224 + * and SHA-256, since these functions use 64-byte blocks; for + * SHA-384 and SHA-512, this is 7, corresponding to their + * 128-byte blocks). + * + * The descriptor may contain a few other flags. + */ + uint32_t desc; + + /** + * \brief Initialisation method. + * + * This method takes as parameter a pointer to a context area, + * that it initialises. The first field of the context is set + * to this vtable; other elements are initialised for a new hash + * computation. + * + * \param ctx pointer to (the first field of) the context. + */ + void (*init)(const br_hash_class **ctx); + + /** + * \brief Data injection method. + * + * The `len` bytes starting at address `data` are injected into + * the running hash computation incarnated by the specified + * context. The context is updated accordingly. It is allowed + * to have `len == 0`, in which case `data` is ignored (and could + * be `NULL`), and nothing happens. + * on the input data. + * + * \param ctx pointer to (the first field of) the context. + * \param data pointer to the first data byte to inject. + * \param len number of bytes to inject. + */ + void (*update)(const br_hash_class **ctx, const void *data, size_t len); + + /** + * \brief Produce hash output. + * + * The hash output corresponding to all data bytes injected in the + * context since the last `init()` call is computed, and written + * in the buffer pointed to by `dst`. The hash output size depends + * on the implemented hash function (e.g. 16 bytes for MD5). + * The context is _not_ modified by this call, so further bytes + * may be afterwards injected to continue the current computation. + * + * \param ctx pointer to (the first field of) the context. + * \param dst destination buffer for the hash output. + */ + void (*out)(const br_hash_class *const *ctx, void *dst); + + /** + * \brief Get running state. + * + * This method saves the current running state into the `dst` + * buffer. What constitutes the "running state" depends on the + * hash function; for Merkle-Damgård hash functions (like + * MD5 or SHA-1), this is the output obtained after processing + * each block. The number of bytes injected so far is returned. + * The context is not modified by this call. + * + * \param ctx pointer to (the first field of) the context. + * \param dst destination buffer for the state. + * \return the injected total byte length. + */ + uint64_t (*state)(const br_hash_class *const *ctx, void *dst); + + /** + * \brief Set running state. + * + * This methods replaces the running state for the function. + * + * \param ctx pointer to (the first field of) the context. + * \param stb source buffer for the state. + * \param count injected total byte length. + */ + void (*set_state)(const br_hash_class **ctx, + const void *stb, uint64_t count); +}; + +#ifndef BR_DOXYGEN_IGNORE +#define BR_HASHDESC_ID(id) ((uint32_t)(id) << BR_HASHDESC_ID_OFF) +#define BR_HASHDESC_ID_OFF 0 +#define BR_HASHDESC_ID_MASK 0xFF + +#define BR_HASHDESC_OUT(size) ((uint32_t)(size) << BR_HASHDESC_OUT_OFF) +#define BR_HASHDESC_OUT_OFF 8 +#define BR_HASHDESC_OUT_MASK 0x7F + +#define BR_HASHDESC_STATE(size) ((uint32_t)(size) << BR_HASHDESC_STATE_OFF) +#define BR_HASHDESC_STATE_OFF 15 +#define BR_HASHDESC_STATE_MASK 0xFF + +#define BR_HASHDESC_LBLEN(ls) ((uint32_t)(ls) << BR_HASHDESC_LBLEN_OFF) +#define BR_HASHDESC_LBLEN_OFF 23 +#define BR_HASHDESC_LBLEN_MASK 0x0F + +#define BR_HASHDESC_MD_PADDING ((uint32_t)1 << 28) +#define BR_HASHDESC_MD_PADDING_128 ((uint32_t)1 << 29) +#define BR_HASHDESC_MD_PADDING_BE ((uint32_t)1 << 30) +#endif + +/* + * Specific hash functions. + * + * Rules for contexts: + * -- No interior pointer. + * -- No pointer to external dynamically allocated resources. + * -- First field is called 'vtable' and is a pointer to a + * const-qualified br_hash_class instance (pointer is set by init()). + * -- SHA-224 and SHA-256 contexts are identical. + * -- SHA-384 and SHA-512 contexts are identical. + * + * Thus, contexts can be moved and cloned to capture the hash function + * current state; and there is no need for any explicit "release" function. + */ + +/** + * \brief Symbolic identifier for MD5. + */ +#define br_md5_ID 1 + +/** + * \brief MD5 output size (in bytes). + */ +#define br_md5_SIZE 16 + +/** + * \brief Constant vtable for MD5. + */ +extern const br_hash_class br_md5_vtable; + +/** + * \brief MD5 context. + * + * First field is a pointer to the vtable; it is set by the initialisation + * function. Other fields are not supposed to be accessed by user code. + */ +typedef struct { + /** + * \brief Pointer to vtable for this context. + */ + const br_hash_class *vtable; +#ifndef BR_DOXYGEN_IGNORE + unsigned char buf[64]; + uint64_t count; + uint32_t val[4]; +#endif +} br_md5_context; + +/** + * \brief MD5 context initialisation. + * + * This function initialises or resets a context for a new MD5 + * computation. It also sets the vtable pointer. + * + * \param ctx pointer to the context structure. + */ +void br_md5_init(br_md5_context *ctx); + +/** + * \brief Inject some data bytes in a running MD5 computation. + * + * The provided context is updated with some data bytes. If the number + * of bytes (`len`) is zero, then the data pointer (`data`) is ignored + * and may be `NULL`, and this function does nothing. + * + * \param ctx pointer to the context structure. + * \param data pointer to the injected data. + * \param len injected data length (in bytes). + */ +void br_md5_update(br_md5_context *ctx, const void *data, size_t len); + +/** + * \brief Compute MD5 output. + * + * The MD5 output for the concatenation of all bytes injected in the + * provided context since the last initialisation or reset call, is + * computed and written in the buffer pointed to by `out`. The context + * itself is not modified, so extra bytes may be injected afterwards + * to continue that computation. + * + * \param ctx pointer to the context structure. + * \param out destination buffer for the hash output. + */ +void br_md5_out(const br_md5_context *ctx, void *out); + +/** + * \brief Save MD5 running state. + * + * The running state for MD5 (output of the last internal block + * processing) is written in the buffer pointed to by `out`. The + * number of bytes injected since the last initialisation or reset + * call is returned. The context is not modified. + * + * \param ctx pointer to the context structure. + * \param out destination buffer for the running state. + * \return the injected total byte length. + */ +uint64_t br_md5_state(const br_md5_context *ctx, void *out); + +/** + * \brief Restore MD5 running state. + * + * The running state for MD5 is set to the provided values. + * + * \param ctx pointer to the context structure. + * \param stb source buffer for the running state. + * \param count the injected total byte length. + */ +void br_md5_set_state(br_md5_context *ctx, const void *stb, uint64_t count); + +/** + * \brief Symbolic identifier for SHA-1. + */ +#define br_sha1_ID 2 + +/** + * \brief SHA-1 output size (in bytes). + */ +#define br_sha1_SIZE 20 + +/** + * \brief Constant vtable for SHA-1. + */ +extern const br_hash_class br_sha1_vtable; + +/** + * \brief SHA-1 context. + * + * First field is a pointer to the vtable; it is set by the initialisation + * function. Other fields are not supposed to be accessed by user code. + */ +typedef struct { + /** + * \brief Pointer to vtable for this context. + */ + const br_hash_class *vtable; +#ifndef BR_DOXYGEN_IGNORE + unsigned char buf[64]; + uint64_t count; + uint32_t val[5]; +#endif +} br_sha1_context; + +/** + * \brief SHA-1 context initialisation. + * + * This function initialises or resets a context for a new SHA-1 + * computation. It also sets the vtable pointer. + * + * \param ctx pointer to the context structure. + */ +void br_sha1_init(br_sha1_context *ctx); + +/** + * \brief Inject some data bytes in a running SHA-1 computation. + * + * The provided context is updated with some data bytes. If the number + * of bytes (`len`) is zero, then the data pointer (`data`) is ignored + * and may be `NULL`, and this function does nothing. + * + * \param ctx pointer to the context structure. + * \param data pointer to the injected data. + * \param len injected data length (in bytes). + */ +void br_sha1_update(br_sha1_context *ctx, const void *data, size_t len); + +/** + * \brief Compute SHA-1 output. + * + * The SHA-1 output for the concatenation of all bytes injected in the + * provided context since the last initialisation or reset call, is + * computed and written in the buffer pointed to by `out`. The context + * itself is not modified, so extra bytes may be injected afterwards + * to continue that computation. + * + * \param ctx pointer to the context structure. + * \param out destination buffer for the hash output. + */ +void br_sha1_out(const br_sha1_context *ctx, void *out); + +/** + * \brief Save SHA-1 running state. + * + * The running state for SHA-1 (output of the last internal block + * processing) is written in the buffer pointed to by `out`. The + * number of bytes injected since the last initialisation or reset + * call is returned. The context is not modified. + * + * \param ctx pointer to the context structure. + * \param out destination buffer for the running state. + * \return the injected total byte length. + */ +uint64_t br_sha1_state(const br_sha1_context *ctx, void *out); + +/** + * \brief Restore SHA-1 running state. + * + * The running state for SHA-1 is set to the provided values. + * + * \param ctx pointer to the context structure. + * \param stb source buffer for the running state. + * \param count the injected total byte length. + */ +void br_sha1_set_state(br_sha1_context *ctx, const void *stb, uint64_t count); + +/** + * \brief Symbolic identifier for SHA-224. + */ +#define br_sha224_ID 3 + +/** + * \brief SHA-224 output size (in bytes). + */ +#define br_sha224_SIZE 28 + +/** + * \brief Constant vtable for SHA-224. + */ +extern const br_hash_class br_sha224_vtable; + +/** + * \brief SHA-224 context. + * + * First field is a pointer to the vtable; it is set by the initialisation + * function. Other fields are not supposed to be accessed by user code. + */ +typedef struct { + /** + * \brief Pointer to vtable for this context. + */ + const br_hash_class *vtable; +#ifndef BR_DOXYGEN_IGNORE + unsigned char buf[64]; + uint64_t count; + uint32_t val[8]; +#endif +} br_sha224_context; + +/** + * \brief SHA-224 context initialisation. + * + * This function initialises or resets a context for a new SHA-224 + * computation. It also sets the vtable pointer. + * + * \param ctx pointer to the context structure. + */ +void br_sha224_init(br_sha224_context *ctx); + +/** + * \brief Inject some data bytes in a running SHA-224 computation. + * + * The provided context is updated with some data bytes. If the number + * of bytes (`len`) is zero, then the data pointer (`data`) is ignored + * and may be `NULL`, and this function does nothing. + * + * \param ctx pointer to the context structure. + * \param data pointer to the injected data. + * \param len injected data length (in bytes). + */ +void br_sha224_update(br_sha224_context *ctx, const void *data, size_t len); + +/** + * \brief Compute SHA-224 output. + * + * The SHA-224 output for the concatenation of all bytes injected in the + * provided context since the last initialisation or reset call, is + * computed and written in the buffer pointed to by `out`. The context + * itself is not modified, so extra bytes may be injected afterwards + * to continue that computation. + * + * \param ctx pointer to the context structure. + * \param out destination buffer for the hash output. + */ +void br_sha224_out(const br_sha224_context *ctx, void *out); + +/** + * \brief Save SHA-224 running state. + * + * The running state for SHA-224 (output of the last internal block + * processing) is written in the buffer pointed to by `out`. The + * number of bytes injected since the last initialisation or reset + * call is returned. The context is not modified. + * + * \param ctx pointer to the context structure. + * \param out destination buffer for the running state. + * \return the injected total byte length. + */ +uint64_t br_sha224_state(const br_sha224_context *ctx, void *out); + +/** + * \brief Restore SHA-224 running state. + * + * The running state for SHA-224 is set to the provided values. + * + * \param ctx pointer to the context structure. + * \param stb source buffer for the running state. + * \param count the injected total byte length. + */ +void br_sha224_set_state(br_sha224_context *ctx, + const void *stb, uint64_t count); + +/** + * \brief Symbolic identifier for SHA-256. + */ +#define br_sha256_ID 4 + +/** + * \brief SHA-256 output size (in bytes). + */ +#define br_sha256_SIZE 32 + +/** + * \brief Constant vtable for SHA-256. + */ +extern const br_hash_class br_sha256_vtable; + +#ifdef BR_DOXYGEN_IGNORE +/** + * \brief SHA-256 context. + * + * First field is a pointer to the vtable; it is set by the initialisation + * function. Other fields are not supposed to be accessed by user code. + */ +typedef struct { + /** + * \brief Pointer to vtable for this context. + */ + const br_hash_class *vtable; +} br_sha256_context; +#else +typedef br_sha224_context br_sha256_context; +#endif + +/** + * \brief SHA-256 context initialisation. + * + * This function initialises or resets a context for a new SHA-256 + * computation. It also sets the vtable pointer. + * + * \param ctx pointer to the context structure. + */ +void br_sha256_init(br_sha256_context *ctx); + +#ifdef BR_DOXYGEN_IGNORE +/** + * \brief Inject some data bytes in a running SHA-256 computation. + * + * The provided context is updated with some data bytes. If the number + * of bytes (`len`) is zero, then the data pointer (`data`) is ignored + * and may be `NULL`, and this function does nothing. + * + * \param ctx pointer to the context structure. + * \param data pointer to the injected data. + * \param len injected data length (in bytes). + */ +void br_sha256_update(br_sha256_context *ctx, const void *data, size_t len); +#else +#define br_sha256_update br_sha224_update +#endif + +/** + * \brief Compute SHA-256 output. + * + * The SHA-256 output for the concatenation of all bytes injected in the + * provided context since the last initialisation or reset call, is + * computed and written in the buffer pointed to by `out`. The context + * itself is not modified, so extra bytes may be injected afterwards + * to continue that computation. + * + * \param ctx pointer to the context structure. + * \param out destination buffer for the hash output. + */ +void br_sha256_out(const br_sha256_context *ctx, void *out); + +#ifdef BR_DOXYGEN_IGNORE +/** + * \brief Save SHA-256 running state. + * + * The running state for SHA-256 (output of the last internal block + * processing) is written in the buffer pointed to by `out`. The + * number of bytes injected since the last initialisation or reset + * call is returned. The context is not modified. + * + * \param ctx pointer to the context structure. + * \param out destination buffer for the running state. + * \return the injected total byte length. + */ +uint64_t br_sha256_state(const br_sha256_context *ctx, void *out); +#else +#define br_sha256_state br_sha224_state +#endif + +#ifdef BR_DOXYGEN_IGNORE +/** + * \brief Restore SHA-256 running state. + * + * The running state for SHA-256 is set to the provided values. + * + * \param ctx pointer to the context structure. + * \param stb source buffer for the running state. + * \param count the injected total byte length. + */ +void br_sha256_set_state(br_sha256_context *ctx, + const void *stb, uint64_t count); +#else +#define br_sha256_set_state br_sha224_set_state +#endif + +/** + * \brief Symbolic identifier for SHA-384. + */ +#define br_sha384_ID 5 + +/** + * \brief SHA-384 output size (in bytes). + */ +#define br_sha384_SIZE 48 + +/** + * \brief Constant vtable for SHA-384. + */ +extern const br_hash_class br_sha384_vtable; + +/** + * \brief SHA-384 context. + * + * First field is a pointer to the vtable; it is set by the initialisation + * function. Other fields are not supposed to be accessed by user code. + */ +typedef struct { + /** + * \brief Pointer to vtable for this context. + */ + const br_hash_class *vtable; +#ifndef BR_DOXYGEN_IGNORE + unsigned char buf[128]; + uint64_t count; + uint64_t val[8]; +#endif +} br_sha384_context; + +/** + * \brief SHA-384 context initialisation. + * + * This function initialises or resets a context for a new SHA-384 + * computation. It also sets the vtable pointer. + * + * \param ctx pointer to the context structure. + */ +void br_sha384_init(br_sha384_context *ctx); + +/** + * \brief Inject some data bytes in a running SHA-384 computation. + * + * The provided context is updated with some data bytes. If the number + * of bytes (`len`) is zero, then the data pointer (`data`) is ignored + * and may be `NULL`, and this function does nothing. + * + * \param ctx pointer to the context structure. + * \param data pointer to the injected data. + * \param len injected data length (in bytes). + */ +void br_sha384_update(br_sha384_context *ctx, const void *data, size_t len); + +/** + * \brief Compute SHA-384 output. + * + * The SHA-384 output for the concatenation of all bytes injected in the + * provided context since the last initialisation or reset call, is + * computed and written in the buffer pointed to by `out`. The context + * itself is not modified, so extra bytes may be injected afterwards + * to continue that computation. + * + * \param ctx pointer to the context structure. + * \param out destination buffer for the hash output. + */ +void br_sha384_out(const br_sha384_context *ctx, void *out); + +/** + * \brief Save SHA-384 running state. + * + * The running state for SHA-384 (output of the last internal block + * processing) is written in the buffer pointed to by `out`. The + * number of bytes injected since the last initialisation or reset + * call is returned. The context is not modified. + * + * \param ctx pointer to the context structure. + * \param out destination buffer for the running state. + * \return the injected total byte length. + */ +uint64_t br_sha384_state(const br_sha384_context *ctx, void *out); + +/** + * \brief Restore SHA-384 running state. + * + * The running state for SHA-384 is set to the provided values. + * + * \param ctx pointer to the context structure. + * \param stb source buffer for the running state. + * \param count the injected total byte length. + */ +void br_sha384_set_state(br_sha384_context *ctx, + const void *stb, uint64_t count); + +/** + * \brief Symbolic identifier for SHA-512. + */ +#define br_sha512_ID 6 + +/** + * \brief SHA-512 output size (in bytes). + */ +#define br_sha512_SIZE 64 + +/** + * \brief Constant vtable for SHA-512. + */ +extern const br_hash_class br_sha512_vtable; + +#ifdef BR_DOXYGEN_IGNORE +/** + * \brief SHA-512 context. + * + * First field is a pointer to the vtable; it is set by the initialisation + * function. Other fields are not supposed to be accessed by user code. + */ +typedef struct { + /** + * \brief Pointer to vtable for this context. + */ + const br_hash_class *vtable; +} br_sha512_context; +#else +typedef br_sha384_context br_sha512_context; +#endif + +/** + * \brief SHA-512 context initialisation. + * + * This function initialises or resets a context for a new SHA-512 + * computation. It also sets the vtable pointer. + * + * \param ctx pointer to the context structure. + */ +void br_sha512_init(br_sha512_context *ctx); + +#ifdef BR_DOXYGEN_IGNORE +/** + * \brief Inject some data bytes in a running SHA-512 computation. + * + * The provided context is updated with some data bytes. If the number + * of bytes (`len`) is zero, then the data pointer (`data`) is ignored + * and may be `NULL`, and this function does nothing. + * + * \param ctx pointer to the context structure. + * \param data pointer to the injected data. + * \param len injected data length (in bytes). + */ +void br_sha512_update(br_sha512_context *ctx, const void *data, size_t len); +#else +#define br_sha512_update br_sha384_update +#endif + +/** + * \brief Compute SHA-512 output. + * + * The SHA-512 output for the concatenation of all bytes injected in the + * provided context since the last initialisation or reset call, is + * computed and written in the buffer pointed to by `out`. The context + * itself is not modified, so extra bytes may be injected afterwards + * to continue that computation. + * + * \param ctx pointer to the context structure. + * \param out destination buffer for the hash output. + */ +void br_sha512_out(const br_sha512_context *ctx, void *out); + +#ifdef BR_DOXYGEN_IGNORE +/** + * \brief Save SHA-512 running state. + * + * The running state for SHA-512 (output of the last internal block + * processing) is written in the buffer pointed to by `out`. The + * number of bytes injected since the last initialisation or reset + * call is returned. The context is not modified. + * + * \param ctx pointer to the context structure. + * \param out destination buffer for the running state. + * \return the injected total byte length. + */ +uint64_t br_sha512_state(const br_sha512_context *ctx, void *out); +#else +#define br_sha512_state br_sha384_state +#endif + +#ifdef BR_DOXYGEN_IGNORE +/** + * \brief Restore SHA-512 running state. + * + * The running state for SHA-512 is set to the provided values. + * + * \param ctx pointer to the context structure. + * \param stb source buffer for the running state. + * \param count the injected total byte length. + */ +void br_sha512_set_state(br_sha512_context *ctx, + const void *stb, uint64_t count); +#else +#define br_sha512_set_state br_sha384_set_state +#endif + +/* + * "md5sha1" is a special hash function that computes both MD5 and SHA-1 + * on the same input, and produces a 36-byte output (MD5 and SHA-1 + * concatenation, in that order). State size is also 36 bytes. + */ + +/** + * \brief Symbolic identifier for MD5+SHA-1. + * + * MD5+SHA-1 is the concatenation of MD5 and SHA-1, computed over the + * same input. It is not one of the functions identified in TLS, so + * we give it a symbolic identifier of value 0. + */ +#define br_md5sha1_ID 0 + +/** + * \brief MD5+SHA-1 output size (in bytes). + */ +#define br_md5sha1_SIZE 36 + +/** + * \brief Constant vtable for MD5+SHA-1. + */ +extern const br_hash_class br_md5sha1_vtable; + +/** + * \brief MD5+SHA-1 context. + * + * First field is a pointer to the vtable; it is set by the initialisation + * function. Other fields are not supposed to be accessed by user code. + */ +typedef struct { + /** + * \brief Pointer to vtable for this context. + */ + const br_hash_class *vtable; +#ifndef BR_DOXYGEN_IGNORE + unsigned char buf[64]; + uint64_t count; + uint32_t val_md5[4]; + uint32_t val_sha1[5]; +#endif +} br_md5sha1_context; + +/** + * \brief MD5+SHA-1 context initialisation. + * + * This function initialises or resets a context for a new SHA-512 + * computation. It also sets the vtable pointer. + * + * \param ctx pointer to the context structure. + */ +void br_md5sha1_init(br_md5sha1_context *ctx); + +/** + * \brief Inject some data bytes in a running MD5+SHA-1 computation. + * + * The provided context is updated with some data bytes. If the number + * of bytes (`len`) is zero, then the data pointer (`data`) is ignored + * and may be `NULL`, and this function does nothing. + * + * \param ctx pointer to the context structure. + * \param data pointer to the injected data. + * \param len injected data length (in bytes). + */ +void br_md5sha1_update(br_md5sha1_context *ctx, const void *data, size_t len); + +/** + * \brief Compute MD5+SHA-1 output. + * + * The MD5+SHA-1 output for the concatenation of all bytes injected in the + * provided context since the last initialisation or reset call, is + * computed and written in the buffer pointed to by `out`. The context + * itself is not modified, so extra bytes may be injected afterwards + * to continue that computation. + * + * \param ctx pointer to the context structure. + * \param out destination buffer for the hash output. + */ +void br_md5sha1_out(const br_md5sha1_context *ctx, void *out); + +/** + * \brief Save MD5+SHA-1 running state. + * + * The running state for MD5+SHA-1 (output of the last internal block + * processing) is written in the buffer pointed to by `out`. The + * number of bytes injected since the last initialisation or reset + * call is returned. The context is not modified. + * + * \param ctx pointer to the context structure. + * \param out destination buffer for the running state. + * \return the injected total byte length. + */ +uint64_t br_md5sha1_state(const br_md5sha1_context *ctx, void *out); + +/** + * \brief Restore MD5+SHA-1 running state. + * + * The running state for MD5+SHA-1 is set to the provided values. + * + * \param ctx pointer to the context structure. + * \param stb source buffer for the running state. + * \param count the injected total byte length. + */ +void br_md5sha1_set_state(br_md5sha1_context *ctx, + const void *stb, uint64_t count); + +/** + * \brief Aggregate context for configurable hash function support. + * + * The `br_hash_compat_context` type is a type which is large enough to + * serve as context for all standard hash functions defined above. + */ +typedef union { + const br_hash_class *vtable; + br_md5_context md5; + br_sha1_context sha1; + br_sha224_context sha224; + br_sha256_context sha256; + br_sha384_context sha384; + br_sha512_context sha512; + br_md5sha1_context md5sha1; +} br_hash_compat_context; + +/* + * The multi-hasher is a construct that handles hashing of the same input + * data with several hash functions, with a single shared input buffer. + * It can handle MD5, SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 + * simultaneously, though which functions are activated depends on + * the set implementation pointers. + */ + +/** + * \brief Multi-hasher context structure. + * + * The multi-hasher runs up to six hash functions in the standard TLS list + * (MD5, SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512) in parallel, over + * the same input. + * + * The multi-hasher does _not_ follow the OOP structure with a vtable. + * Instead, it is configured with the vtables of the hash functions it + * should run. Structure fields are not supposed to be accessed directly. + */ +typedef struct { +#ifndef BR_DOXYGEN_IGNORE + unsigned char buf[128]; + uint64_t count; + uint32_t val_32[25]; + uint64_t val_64[16]; + const br_hash_class *impl[6]; +#endif +} br_multihash_context; + +/** + * \brief Clear a multi-hasher context. + * + * This should always be called once on a given context, _before_ setting + * the implementation pointers. + * + * \param ctx the multi-hasher context. + */ +void br_multihash_zero(br_multihash_context *ctx); + +/** + * \brief Set a hash function implementation. + * + * Implementations shall be set _after_ clearing the context (with + * `br_multihash_zero()`) but _before_ initialising the computation + * (with `br_multihash_init()`). The hash function implementation + * MUST be one of the standard hash functions (MD5, SHA-1, SHA-224, + * SHA-256, SHA-384 or SHA-512); it may also be `NULL` to remove + * an implementation from the multi-hasher. + * + * \param ctx the multi-hasher context. + * \param id the hash function symbolic identifier. + * \param impl the hash function vtable, or `NULL`. + */ +static inline void +br_multihash_setimpl(br_multihash_context *ctx, + int id, const br_hash_class *impl) +{ + /* + * This code relies on hash functions ID being values 1 to 6, + * in the MD5 to SHA-512 order. + */ + ctx->impl[id - 1] = impl; +} + +/** + * \brief Get a hash function implementation. + * + * This function returns the currently configured vtable for a given + * hash function (by symbolic ID). If no such function was configured in + * the provided multi-hasher context, then this function returns `NULL`. + * + * \param ctx the multi-hasher context. + * \param id the hash function symbolic identifier. + * \return the hash function vtable, or `NULL`. + */ +static inline const br_hash_class * +br_multihash_getimpl(const br_multihash_context *ctx, int id) +{ + return ctx->impl[id - 1]; +} + +/** + * \brief Reset a multi-hasher context. + * + * This function prepares the context for a new hashing computation, + * for all implementations configured at that point. + * + * \param ctx the multi-hasher context. + */ +void br_multihash_init(br_multihash_context *ctx); + +/** + * \brief Inject some data bytes in a running multi-hashing computation. + * + * The provided context is updated with some data bytes. If the number + * of bytes (`len`) is zero, then the data pointer (`data`) is ignored + * and may be `NULL`, and this function does nothing. + * + * \param ctx pointer to the context structure. + * \param data pointer to the injected data. + * \param len injected data length (in bytes). + */ +void br_multihash_update(br_multihash_context *ctx, + const void *data, size_t len); + +/** + * \brief Compute a hash output from a multi-hasher. + * + * The hash output for the concatenation of all bytes injected in the + * provided context since the last initialisation or reset call, is + * computed and written in the buffer pointed to by `dst`. The hash + * function to use is identified by `id` and must be one of the standard + * hash functions. If that hash function was indeed configured in the + * multi-hasher context, the corresponding hash value is written in + * `dst` and its length (in bytes) is returned. If the hash function + * was _not_ configured, then nothing is written in `dst` and 0 is + * returned. + * + * The context itself is not modified, so extra bytes may be injected + * afterwards to continue the hash computations. + * + * \param ctx pointer to the context structure. + * \param id the hash function symbolic identifier. + * \param dst destination buffer for the hash output. + * \return the hash output length (in bytes), or 0. + */ +size_t br_multihash_out(const br_multihash_context *ctx, int id, void *dst); + +/** + * \brief Type for a GHASH implementation. + * + * GHASH is a sort of keyed hash meant to be used to implement GCM in + * combination with a block cipher (with 16-byte blocks). + * + * The `y` array has length 16 bytes and is used for input and output; in + * a complete GHASH run, it starts with an all-zero value. `h` is a 16-byte + * value that serves as key (it is derived from the encryption key in GCM, + * using the block cipher). The data length (`len`) is expressed in bytes. + * The `y` array is updated. + * + * If the data length is not a multiple of 16, then the data is implicitly + * padded with zeros up to the next multiple of 16. Thus, when using GHASH + * in GCM, this method may be called twice, for the associated data and + * for the ciphertext, respectively; the zero-padding implements exactly + * the GCM rules. + * + * \param y the array to update. + * \param h the GHASH key. + * \param data the input data (may be `NULL` if `len` is zero). + * \param len the input data length (in bytes). + */ +typedef void (*br_ghash)(void *y, const void *h, const void *data, size_t len); + +/** + * \brief GHASH implementation using multiplications (mixed 32-bit). + * + * This implementation uses multiplications of 32-bit values, with a + * 64-bit result. It is constant-time (if multiplications are + * constant-time). + * + * \param y the array to update. + * \param h the GHASH key. + * \param data the input data (may be `NULL` if `len` is zero). + * \param len the input data length (in bytes). + */ +void br_ghash_ctmul(void *y, const void *h, const void *data, size_t len); + +/** + * \brief GHASH implementation using multiplications (strict 32-bit). + * + * This implementation uses multiplications of 32-bit values, with a + * 32-bit result. It is usually somewhat slower than `br_ghash_ctmul()`, + * but it is expected to be faster on architectures for which the + * 32-bit multiplication opcode does not yield the upper 32 bits of the + * product. It is constant-time (if multiplications are constant-time). + * + * \param y the array to update. + * \param h the GHASH key. + * \param data the input data (may be `NULL` if `len` is zero). + * \param len the input data length (in bytes). + */ +void br_ghash_ctmul32(void *y, const void *h, const void *data, size_t len); + +/** + * \brief GHASH implementation using multiplications (64-bit). + * + * This implementation uses multiplications of 64-bit values, with a + * 64-bit result. It is constant-time (if multiplications are + * constant-time). It is substantially faster than `br_ghash_ctmul()` + * and `br_ghash_ctmul32()` on most 64-bit architectures. + * + * \param y the array to update. + * \param h the GHASH key. + * \param data the input data (may be `NULL` if `len` is zero). + * \param len the input data length (in bytes). + */ +void br_ghash_ctmul64(void *y, const void *h, const void *data, size_t len); + +/** + * \brief GHASH implementation using the `pclmulqdq` opcode (part of the + * AES-NI instructions). + * + * This implementation is available only on x86 platforms where the + * compiler supports the relevant intrinsic functions. Even if the + * compiler supports these functions, the local CPU might not support + * the `pclmulqdq` opcode, meaning that a call will fail with an + * illegal instruction exception. To safely obtain a pointer to this + * function when supported (or 0 otherwise), use `br_ghash_pclmul_get()`. + * + * \param y the array to update. + * \param h the GHASH key. + * \param data the input data (may be `NULL` if `len` is zero). + * \param len the input data length (in bytes). + */ +void br_ghash_pclmul(void *y, const void *h, const void *data, size_t len); + +/** + * \brief Obtain the `pclmul` GHASH implementation, if available. + * + * If the `pclmul` implementation was compiled in the library (depending + * on the compiler abilities) _and_ the local CPU appears to support the + * opcode, then this function will return a pointer to the + * `br_ghash_pclmul()` function. Otherwise, it will return `0`. + * + * \return the `pclmul` GHASH implementation, or `0`. + */ +br_ghash br_ghash_pclmul_get(void); + +/** + * \brief GHASH implementation using the POWER8 opcodes. + * + * This implementation is available only on POWER8 platforms (and later). + * To safely obtain a pointer to this function when supported (or 0 + * otherwise), use `br_ghash_pwr8_get()`. + * + * \param y the array to update. + * \param h the GHASH key. + * \param data the input data (may be `NULL` if `len` is zero). + * \param len the input data length (in bytes). + */ +void br_ghash_pwr8(void *y, const void *h, const void *data, size_t len); + +/** + * \brief Obtain the `pwr8` GHASH implementation, if available. + * + * If the `pwr8` implementation was compiled in the library (depending + * on the compiler abilities) _and_ the local CPU appears to support the + * opcode, then this function will return a pointer to the + * `br_ghash_pwr8()` function. Otherwise, it will return `0`. + * + * \return the `pwr8` GHASH implementation, or `0`. + */ +br_ghash br_ghash_pwr8_get(void); + +#ifdef __cplusplus +} +#endif + +#endif |