summary refs log tree commit diff
path: root/src/freetype/ftcalc.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/freetype/ftcalc.c')
-rw-r--r--src/freetype/ftcalc.c972
1 files changed, 972 insertions, 0 deletions
diff --git a/src/freetype/ftcalc.c b/src/freetype/ftcalc.c
new file mode 100644
index 0000000..7e41ec0
--- /dev/null
+++ b/src/freetype/ftcalc.c
@@ -0,0 +1,972 @@
+/***************************************************************************/
+/*                                                                         */
+/*  ftcalc.c                                                               */
+/*                                                                         */
+/*    Arithmetic computations (body).                                      */
+/*                                                                         */
+/*  Copyright 1996-2018 by                                                 */
+/*  David Turner, Robert Wilhelm, and Werner Lemberg.                      */
+/*                                                                         */
+/*  This file is part of the FreeType project, and may only be used,       */
+/*  modified, and distributed under the terms of the FreeType project      */
+/*  license, LICENSE.TXT.  By continuing to use, modify, or distribute     */
+/*  this file you indicate that you have read the license and              */
+/*  understand and accept it fully.                                        */
+/*                                                                         */
+/***************************************************************************/
+
+  /*************************************************************************/
+  /*                                                                       */
+  /* Support for 1-complement arithmetic has been totally dropped in this  */
+  /* release.  You can still write your own code if you need it.           */
+  /*                                                                       */
+  /*************************************************************************/
+
+  /*************************************************************************/
+  /*                                                                       */
+  /* Implementing basic computation routines.                              */
+  /*                                                                       */
+  /* FT_MulDiv(), FT_MulFix(), FT_DivFix(), FT_RoundFix()                  */
+  /* are declared in freetype.h.                                           */
+  /*                                                                       */
+  /*************************************************************************/
+
+
+#include "ft2build.h"
+#include FT_GLYPH_H
+#include FT_TRIGONOMETRY_H
+#include FT_INTERNAL_CALC_H
+#include FT_INTERNAL_DEBUG_H
+#include FT_INTERNAL_OBJECTS_H
+
+
+#ifdef FT_MULFIX_ASSEMBLER
+#undef FT_MulFix
+#endif
+
+/* we need to emulate a 64-bit data type if a real one isn't available */
+
+#ifndef FT_LONG64
+
+  typedef struct  FT_Int64_
+  {
+    FT_UInt32  lo;
+    FT_UInt32  hi;
+
+  } FT_Int64;
+
+#endif /* !FT_LONG64 */
+
+
+  /*************************************************************************/
+  /*                                                                       */
+  /* The macro FT_COMPONENT is used in trace mode.  It is an implicit      */
+  /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log  */
+  /* messages during execution.                                            */
+  /*                                                                       */
+#undef  FT_COMPONENT
+#define FT_COMPONENT  trace_calc
+
+
+  /* transfer sign, leaving a positive number;                        */
+  /* we need an unsigned value to safely negate INT_MIN (or LONG_MIN) */
+#define FT_MOVE_SIGN( x, x_unsigned, s ) \
+  FT_BEGIN_STMNT                         \
+    if ( x < 0 )                         \
+    {                                    \
+      x_unsigned = 0U - (x_unsigned);    \
+      s          = -s;                   \
+    }                                    \
+  FT_END_STMNT
+
+  /* The following three functions are available regardless of whether */
+  /* FT_LONG64 is defined.                                             */
+
+  /* documentation is in freetype.h */
+
+  FT_EXPORT_DEF( FT_Fixed )
+  FT_RoundFix( FT_Fixed  a )
+  {
+    return ( ADD_LONG( a, 0x8000L - ( a < 0 ) ) ) & ~0xFFFFL;
+  }
+
+
+#ifndef FT_MSB
+
+  FT_BASE_DEF ( FT_Int )
+  FT_MSB( FT_UInt32 z )
+  {
+    FT_Int  shift = 0;
+
+
+    /* determine msb bit index in `shift' */
+    if ( z & 0xFFFF0000UL )
+    {
+      z     >>= 16;
+      shift  += 16;
+    }
+    if ( z & 0x0000FF00UL )
+    {
+      z     >>= 8;
+      shift  += 8;
+    }
+    if ( z & 0x000000F0UL )
+    {
+      z     >>= 4;
+      shift  += 4;
+    }
+    if ( z & 0x0000000CUL )
+    {
+      z     >>= 2;
+      shift  += 2;
+    }
+    if ( z & 0x00000002UL )
+    {
+   /* z     >>= 1; */
+      shift  += 1;
+    }
+
+    return shift;
+  }
+
+#endif /* !FT_MSB */
+
+
+  /* documentation is in ftcalc.h */
+
+  FT_BASE_DEF( FT_Fixed )
+  FT_Hypot( FT_Fixed  x,
+            FT_Fixed  y )
+  {
+    FT_Vector  v;
+
+
+    v.x = x;
+    v.y = y;
+
+    return FT_Vector_Length( &v );
+  }
+
+
+#ifdef FT_LONG64
+
+
+  /* documentation is in freetype.h */
+
+  FT_EXPORT_DEF( FT_Long )
+  FT_MulDiv( FT_Long  a_,
+             FT_Long  b_,
+             FT_Long  c_ )
+  {
+    FT_Int     s = 1;
+    FT_UInt64  a, b, c, d;
+    FT_Long    d_;
+
+
+    a = (FT_UInt64)a_;
+    b = (FT_UInt64)b_;
+    c = (FT_UInt64)c_;
+
+    FT_MOVE_SIGN( a_, a, s );
+    FT_MOVE_SIGN( b_, b, s );
+    FT_MOVE_SIGN( c_, c, s );
+
+    d = c > 0 ? ( a * b + ( c >> 1 ) ) / c
+              : 0x7FFFFFFFUL;
+
+    d_ = (FT_Long)d;
+
+    return s < 0 ? NEG_LONG( d_ ) : d_;
+  }
+
+
+  /* documentation is in ftcalc.h */
+
+  FT_BASE_DEF( FT_Long )
+  FT_MulDiv_No_Round( FT_Long  a_,
+                      FT_Long  b_,
+                      FT_Long  c_ )
+  {
+    FT_Int     s = 1;
+    FT_UInt64  a, b, c, d;
+    FT_Long    d_;
+
+
+    a = (FT_UInt64)a_;
+    b = (FT_UInt64)b_;
+    c = (FT_UInt64)c_;
+
+    FT_MOVE_SIGN( a_, a, s );
+    FT_MOVE_SIGN( b_, b, s );
+    FT_MOVE_SIGN( c_, c, s );
+
+    d = c > 0 ? a * b / c
+              : 0x7FFFFFFFUL;
+
+    d_ = (FT_Long)d;
+
+    return s < 0 ? NEG_LONG( d_ ) : d_;
+  }
+
+
+  /* documentation is in freetype.h */
+
+  FT_EXPORT_DEF( FT_Long )
+  FT_MulFix( FT_Long  a_,
+             FT_Long  b_ )
+  {
+#ifdef FT_MULFIX_ASSEMBLER
+
+    return FT_MULFIX_ASSEMBLER( (FT_Int32)a_, (FT_Int32)b_ );
+
+#else
+
+    FT_Int64  ab = (FT_Int64)a_ * (FT_Int64)b_;
+
+    /* this requires arithmetic right shift of signed numbers */
+    return (FT_Long)( ( ab + 0x8000L - ( ab < 0 ) ) >> 16 );
+
+#endif /* FT_MULFIX_ASSEMBLER */
+  }
+
+
+  /* documentation is in freetype.h */
+
+  FT_EXPORT_DEF( FT_Long )
+  FT_DivFix( FT_Long  a_,
+             FT_Long  b_ )
+  {
+    FT_Int     s = 1;
+    FT_UInt64  a, b, q;
+    FT_Long    q_;
+
+
+    a = (FT_UInt64)a_;
+    b = (FT_UInt64)b_;
+
+    FT_MOVE_SIGN( a_, a, s );
+    FT_MOVE_SIGN( b_, b, s );
+
+    q = b > 0 ? ( ( a << 16 ) + ( b >> 1 ) ) / b
+              : 0x7FFFFFFFUL;
+
+    q_ = (FT_Long)q;
+
+    return s < 0 ? NEG_LONG( q_ ) : q_;
+  }
+
+
+#else /* !FT_LONG64 */
+
+
+  static void
+  ft_multo64( FT_UInt32  x,
+              FT_UInt32  y,
+              FT_Int64  *z )
+  {
+    FT_UInt32  lo1, hi1, lo2, hi2, lo, hi, i1, i2;
+
+
+    lo1 = x & 0x0000FFFFU;  hi1 = x >> 16;
+    lo2 = y & 0x0000FFFFU;  hi2 = y >> 16;
+
+    lo = lo1 * lo2;
+    i1 = lo1 * hi2;
+    i2 = lo2 * hi1;
+    hi = hi1 * hi2;
+
+    /* Check carry overflow of i1 + i2 */
+    i1 += i2;
+    hi += (FT_UInt32)( i1 < i2 ) << 16;
+
+    hi += i1 >> 16;
+    i1  = i1 << 16;
+
+    /* Check carry overflow of i1 + lo */
+    lo += i1;
+    hi += ( lo < i1 );
+
+    z->lo = lo;
+    z->hi = hi;
+  }
+
+
+  static FT_UInt32
+  ft_div64by32( FT_UInt32  hi,
+                FT_UInt32  lo,
+                FT_UInt32  y )
+  {
+    FT_UInt32  r, q;
+    FT_Int     i;
+
+
+    if ( hi >= y )
+      return (FT_UInt32)0x7FFFFFFFL;
+
+    /* We shift as many bits as we can into the high register, perform     */
+    /* 32-bit division with modulo there, then work through the remaining  */
+    /* bits with long division. This optimization is especially noticeable */
+    /* for smaller dividends that barely use the high register.            */
+
+    i = 31 - FT_MSB( hi );
+    r = ( hi << i ) | ( lo >> ( 32 - i ) ); lo <<= i; /* left 64-bit shift */
+    q = r / y;
+    r -= q * y;   /* remainder */
+
+    i = 32 - i;   /* bits remaining in low register */
+    do
+    {
+      q <<= 1;
+      r   = ( r << 1 ) | ( lo >> 31 ); lo <<= 1;
+
+      if ( r >= y )
+      {
+        r -= y;
+        q |= 1;
+      }
+    } while ( --i );
+
+    return q;
+  }
+
+
+  static void
+  FT_Add64( FT_Int64*  x,
+            FT_Int64*  y,
+            FT_Int64  *z )
+  {
+    FT_UInt32  lo, hi;
+
+
+    lo = x->lo + y->lo;
+    hi = x->hi + y->hi + ( lo < x->lo );
+
+    z->lo = lo;
+    z->hi = hi;
+  }
+
+
+  /*  The FT_MulDiv function has been optimized thanks to ideas from     */
+  /*  Graham Asher and Alexei Podtelezhnikov.  The trick is to optimize  */
+  /*  a rather common case when everything fits within 32-bits.          */
+  /*                                                                     */
+  /*  We compute 'a*b+c/2', then divide it by 'c' (all positive values). */
+  /*                                                                     */
+  /*  The product of two positive numbers never exceeds the square of    */
+  /*  its mean values.  Therefore, we always avoid the overflow by       */
+  /*  imposing                                                           */
+  /*                                                                     */
+  /*    (a + b) / 2 <= sqrt(X - c/2)    ,                                */
+  /*                                                                     */
+  /*  where X = 2^32 - 1, the maximum unsigned 32-bit value, and using   */
+  /*  unsigned arithmetic.  Now we replace `sqrt' with a linear function */
+  /*  that is smaller or equal for all values of c in the interval       */
+  /*  [0;X/2]; it should be equal to sqrt(X) and sqrt(3X/4) at the       */
+  /*  endpoints.  Substituting the linear solution and explicit numbers  */
+  /*  we get                                                             */
+  /*                                                                     */
+  /*    a + b <= 131071.99 - c / 122291.84    .                          */
+  /*                                                                     */
+  /*  In practice, we should use a faster and even stronger inequality   */
+  /*                                                                     */
+  /*    a + b <= 131071 - (c >> 16)                                      */
+  /*                                                                     */
+  /*  or, alternatively,                                                 */
+  /*                                                                     */
+  /*    a + b <= 129894 - (c >> 17)    .                                 */
+  /*                                                                     */
+  /*  FT_MulFix, on the other hand, is optimized for a small value of    */
+  /*  the first argument, when the second argument can be much larger.   */
+  /*  This can be achieved by scaling the second argument and the limit  */
+  /*  in the above inequalities.  For example,                           */
+  /*                                                                     */
+  /*    a + (b >> 8) <= (131071 >> 4)                                    */
+  /*                                                                     */
+  /*  covers the practical range of use. The actual test below is a bit  */
+  /*  tighter to avoid the border case overflows.                        */
+  /*                                                                     */
+  /*  In the case of FT_DivFix, the exact overflow check                 */
+  /*                                                                     */
+  /*    a << 16 <= X - c/2                                               */
+  /*                                                                     */
+  /*  is scaled down by 2^16 and we use                                  */
+  /*                                                                     */
+  /*    a <= 65535 - (c >> 17)    .                                      */
+
+  /* documentation is in freetype.h */
+
+  FT_EXPORT_DEF( FT_Long )
+  FT_MulDiv( FT_Long  a_,
+             FT_Long  b_,
+             FT_Long  c_ )
+  {
+    FT_Int     s = 1;
+    FT_UInt32  a, b, c;
+
+
+    /* XXX: this function does not allow 64-bit arguments */
+
+    a = (FT_UInt32)a_;
+    b = (FT_UInt32)b_;
+    c = (FT_UInt32)c_;
+
+    FT_MOVE_SIGN( a_, a, s );
+    FT_MOVE_SIGN( b_, b, s );
+    FT_MOVE_SIGN( c_, c, s );
+
+    if ( c == 0 )
+      a = 0x7FFFFFFFUL;
+
+    else if ( a + b <= 129894UL - ( c >> 17 ) )
+      a = ( a * b + ( c >> 1 ) ) / c;
+
+    else
+    {
+      FT_Int64  temp, temp2;
+
+
+      ft_multo64( a, b, &temp );
+
+      temp2.hi = 0;
+      temp2.lo = c >> 1;
+
+      FT_Add64( &temp, &temp2, &temp );
+
+      /* last attempt to ditch long division */
+      a = ( temp.hi == 0 ) ? temp.lo / c
+                           : ft_div64by32( temp.hi, temp.lo, c );
+    }
+
+    a_ = (FT_Long)a;
+
+    return s < 0 ? NEG_LONG( a_ ) : a_;
+  }
+
+
+  FT_BASE_DEF( FT_Long )
+  FT_MulDiv_No_Round( FT_Long  a_,
+                      FT_Long  b_,
+                      FT_Long  c_ )
+  {
+    FT_Int     s = 1;
+    FT_UInt32  a, b, c;
+
+
+    /* XXX: this function does not allow 64-bit arguments */
+
+    a = (FT_UInt32)a_;
+    b = (FT_UInt32)b_;
+    c = (FT_UInt32)c_;
+
+    FT_MOVE_SIGN( a_, a, s );
+    FT_MOVE_SIGN( b_, b, s );
+    FT_MOVE_SIGN( c_, c, s );
+
+    if ( c == 0 )
+      a = 0x7FFFFFFFUL;
+
+    else if ( a + b <= 131071UL )
+      a = a * b / c;
+
+    else
+    {
+      FT_Int64  temp;
+
+
+      ft_multo64( a, b, &temp );
+
+      /* last attempt to ditch long division */
+      a = ( temp.hi == 0 ) ? temp.lo / c
+                           : ft_div64by32( temp.hi, temp.lo, c );
+    }
+
+    a_ = (FT_Long)a;
+
+    return s < 0 ? NEG_LONG( a_ ) : a_;
+  }
+
+
+  /* documentation is in freetype.h */
+
+  FT_EXPORT_DEF( FT_Long )
+  FT_MulFix( FT_Long  a_,
+             FT_Long  b_ )
+  {
+#ifdef FT_MULFIX_ASSEMBLER
+
+    return FT_MULFIX_ASSEMBLER( a_, b_ );
+
+#elif 0
+
+    /*
+     *  This code is nonportable.  See comment below.
+     *
+     *  However, on a platform where right-shift of a signed quantity fills
+     *  the leftmost bits by copying the sign bit, it might be faster.
+     */
+
+    FT_Long    sa, sb;
+    FT_UInt32  a, b;
+
+
+    /*
+     *  This is a clever way of converting a signed number `a' into its
+     *  absolute value (stored back into `a') and its sign.  The sign is
+     *  stored in `sa'; 0 means `a' was positive or zero, and -1 means `a'
+     *  was negative.  (Similarly for `b' and `sb').
+     *
+     *  Unfortunately, it doesn't work (at least not portably).
+     *
+     *  It makes the assumption that right-shift on a negative signed value
+     *  fills the leftmost bits by copying the sign bit.  This is wrong.
+     *  According to K&R 2nd ed, section `A7.8 Shift Operators' on page 206,
+     *  the result of right-shift of a negative signed value is
+     *  implementation-defined.  At least one implementation fills the
+     *  leftmost bits with 0s (i.e., it is exactly the same as an unsigned
+     *  right shift).  This means that when `a' is negative, `sa' ends up
+     *  with the value 1 rather than -1.  After that, everything else goes
+     *  wrong.
+     */
+    sa = ( a_ >> ( sizeof ( a_ ) * 8 - 1 ) );
+    a  = ( a_ ^ sa ) - sa;
+    sb = ( b_ >> ( sizeof ( b_ ) * 8 - 1 ) );
+    b  = ( b_ ^ sb ) - sb;
+
+    a = (FT_UInt32)a_;
+    b = (FT_UInt32)b_;
+
+    if ( a + ( b >> 8 ) <= 8190UL )
+      a = ( a * b + 0x8000U ) >> 16;
+    else
+    {
+      FT_UInt32  al = a & 0xFFFFUL;
+
+
+      a = ( a >> 16 ) * b + al * ( b >> 16 ) +
+          ( ( al * ( b & 0xFFFFUL ) + 0x8000UL ) >> 16 );
+    }
+
+    sa ^= sb;
+    a   = ( a ^ sa ) - sa;
+
+    return (FT_Long)a;
+
+#else /* 0 */
+
+    FT_Int     s = 1;
+    FT_UInt32  a, b;
+
+
+    /* XXX: this function does not allow 64-bit arguments */
+
+    a = (FT_UInt32)a_;
+    b = (FT_UInt32)b_;
+
+    FT_MOVE_SIGN( a_, a, s );
+    FT_MOVE_SIGN( b_, b, s );
+
+    if ( a + ( b >> 8 ) <= 8190UL )
+      a = ( a * b + 0x8000UL ) >> 16;
+    else
+    {
+      FT_UInt32  al = a & 0xFFFFUL;
+
+
+      a = ( a >> 16 ) * b + al * ( b >> 16 ) +
+          ( ( al * ( b & 0xFFFFUL ) + 0x8000UL ) >> 16 );
+    }
+
+    a_ = (FT_Long)a;
+
+    return s < 0 ? NEG_LONG( a_ ) : a_;
+
+#endif /* 0 */
+
+  }
+
+
+  /* documentation is in freetype.h */
+
+  FT_EXPORT_DEF( FT_Long )
+  FT_DivFix( FT_Long  a_,
+             FT_Long  b_ )
+  {
+    FT_Int     s = 1;
+    FT_UInt32  a, b, q;
+    FT_Long    q_;
+
+
+    /* XXX: this function does not allow 64-bit arguments */
+
+    a = (FT_UInt32)a_;
+    b = (FT_UInt32)b_;
+
+    FT_MOVE_SIGN( a_, a, s );
+    FT_MOVE_SIGN( b_, b, s );
+
+    if ( b == 0 )
+    {
+      /* check for division by 0 */
+      q = 0x7FFFFFFFUL;
+    }
+    else if ( a <= 65535UL - ( b >> 17 ) )
+    {
+      /* compute result directly */
+      q = ( ( a << 16 ) + ( b >> 1 ) ) / b;
+    }
+    else
+    {
+      /* we need more bits; we have to do it by hand */
+      FT_Int64  temp, temp2;
+
+
+      temp.hi  = a >> 16;
+      temp.lo  = a << 16;
+      temp2.hi = 0;
+      temp2.lo = b >> 1;
+
+      FT_Add64( &temp, &temp2, &temp );
+      q = ft_div64by32( temp.hi, temp.lo, b );
+    }
+
+    q_ = (FT_Long)q;
+
+    return s < 0 ? NEG_LONG( q_ ) : q_;
+  }
+
+
+#endif /* !FT_LONG64 */
+
+
+  /* documentation is in ftglyph.h */
+
+  FT_EXPORT_DEF( FT_Error )
+  FT_Matrix_Invert( FT_Matrix*  matrix )
+  {
+    FT_Pos  delta, xx, yy;
+
+
+    if ( !matrix )
+      return FT_THROW( Invalid_Argument );
+
+    /* compute discriminant */
+    delta = FT_MulFix( matrix->xx, matrix->yy ) -
+            FT_MulFix( matrix->xy, matrix->yx );
+
+    if ( !delta )
+      return FT_THROW( Invalid_Argument );  /* matrix can't be inverted */
+
+    matrix->xy = - FT_DivFix( matrix->xy, delta );
+    matrix->yx = - FT_DivFix( matrix->yx, delta );
+
+    xx = matrix->xx;
+    yy = matrix->yy;
+
+    matrix->xx = FT_DivFix( yy, delta );
+    matrix->yy = FT_DivFix( xx, delta );
+
+    return FT_Err_Ok;
+  }
+
+
+  /* documentation is in ftcalc.h */
+
+  FT_BASE_DEF( void )
+  FT_Matrix_Multiply_Scaled( const FT_Matrix*  a,
+                             FT_Matrix        *b,
+                             FT_Long           scaling )
+  {
+    FT_Fixed  xx, xy, yx, yy;
+
+    FT_Long   val = 0x10000L * scaling;
+
+
+    if ( !a || !b )
+      return;
+
+    xx = ADD_LONG( FT_MulDiv( a->xx, b->xx, val ),
+                   FT_MulDiv( a->xy, b->yx, val ) );
+    xy = ADD_LONG( FT_MulDiv( a->xx, b->xy, val ),
+                   FT_MulDiv( a->xy, b->yy, val ) );
+    yx = ADD_LONG( FT_MulDiv( a->yx, b->xx, val ),
+                   FT_MulDiv( a->yy, b->yx, val ) );
+    yy = ADD_LONG( FT_MulDiv( a->yx, b->xy, val ),
+                   FT_MulDiv( a->yy, b->yy, val ) );
+
+    b->xx = xx;
+    b->xy = xy;
+    b->yx = yx;
+    b->yy = yy;
+  }
+
+
+  /* documentation is in ftcalc.h */
+
+  FT_BASE_DEF( void )
+  FT_Vector_Transform_Scaled( FT_Vector*        vector,
+                              const FT_Matrix*  matrix,
+                              FT_Long           scaling )
+  {
+    FT_Pos   xz, yz;
+
+    FT_Long  val = 0x10000L * scaling;
+
+
+    if ( !vector || !matrix )
+      return;
+
+    xz = ADD_LONG( FT_MulDiv( vector->x, matrix->xx, val ),
+                   FT_MulDiv( vector->y, matrix->xy, val ) );
+    yz = ADD_LONG( FT_MulDiv( vector->x, matrix->yx, val ),
+                   FT_MulDiv( vector->y, matrix->yy, val ) );
+
+    vector->x = xz;
+    vector->y = yz;
+  }
+
+
+  /* documentation is in ftcalc.h */
+
+  FT_BASE_DEF( FT_UInt32 )
+  FT_Vector_NormLen( FT_Vector*  vector )
+  {
+    FT_Int32   x_ = vector->x;
+    FT_Int32   y_ = vector->y;
+    FT_Int32   b, z;
+    FT_UInt32  x, y, u, v, l;
+    FT_Int     sx = 1, sy = 1, shift;
+
+
+    x = (FT_UInt32)x_;
+    y = (FT_UInt32)y_;
+
+    FT_MOVE_SIGN( x_, x, sx );
+    FT_MOVE_SIGN( y_, y, sy );
+
+    /* trivial cases */
+    if ( x == 0 )
+    {
+      if ( y > 0 )
+        vector->y = sy * 0x10000;
+      return y;
+    }
+    else if ( y == 0 )
+    {
+      if ( x > 0 )
+        vector->x = sx * 0x10000;
+      return x;
+    }
+
+    /* Estimate length and prenormalize by shifting so that */
+    /* the new approximate length is between 2/3 and 4/3.   */
+    /* The magic constant 0xAAAAAAAAUL (2/3 of 2^32) helps  */
+    /* achieve this in 16.16 fixed-point representation.    */
+    l = x > y ? x + ( y >> 1 )
+              : y + ( x >> 1 );
+
+    shift  = 31 - FT_MSB( l );
+    shift -= 15 + ( l >= ( 0xAAAAAAAAUL >> shift ) );
+
+    if ( shift > 0 )
+    {
+      x <<= shift;
+      y <<= shift;
+
+      /* re-estimate length for tiny vectors */
+      l = x > y ? x + ( y >> 1 )
+                : y + ( x >> 1 );
+    }
+    else
+    {
+      x >>= -shift;
+      y >>= -shift;
+      l >>= -shift;
+    }
+
+    /* lower linear approximation for reciprocal length minus one */
+    b = 0x10000 - (FT_Int32)l;
+
+    x_ = (FT_Int32)x;
+    y_ = (FT_Int32)y;
+
+    /* Newton's iterations */
+    do
+    {
+      u = (FT_UInt32)( x_ + ( x_ * b >> 16 ) );
+      v = (FT_UInt32)( y_ + ( y_ * b >> 16 ) );
+
+      /* Normalized squared length in the parentheses approaches 2^32. */
+      /* On two's complement systems, converting to signed gives the   */
+      /* difference with 2^32 even if the expression wraps around.     */
+      z = -(FT_Int32)( u * u + v * v ) / 0x200;
+      z = z * ( ( 0x10000 + b ) >> 8 ) / 0x10000;
+
+      b += z;
+
+    } while ( z > 0 );
+
+    vector->x = sx < 0 ? -(FT_Pos)u : (FT_Pos)u;
+    vector->y = sy < 0 ? -(FT_Pos)v : (FT_Pos)v;
+
+    /* Conversion to signed helps to recover from likely wrap around */
+    /* in calculating the prenormalized length, because it gives the */
+    /* correct difference with 2^32 on two's complement systems.     */
+    l = (FT_UInt32)( 0x10000 + (FT_Int32)( u * x + v * y ) / 0x10000 );
+    if ( shift > 0 )
+      l = ( l + ( 1 << ( shift - 1 ) ) ) >> shift;
+    else
+      l <<= -shift;
+
+    return l;
+  }
+
+
+#if 0
+
+  /* documentation is in ftcalc.h */
+
+  FT_BASE_DEF( FT_Int32 )
+  FT_SqrtFixed( FT_Int32  x )
+  {
+    FT_UInt32  root, rem_hi, rem_lo, test_div;
+    FT_Int     count;
+
+
+    root = 0;
+
+    if ( x > 0 )
+    {
+      rem_hi = 0;
+      rem_lo = (FT_UInt32)x;
+      count  = 24;
+      do
+      {
+        rem_hi   = ( rem_hi << 2 ) | ( rem_lo >> 30 );
+        rem_lo <<= 2;
+        root   <<= 1;
+        test_div = ( root << 1 ) + 1;
+
+        if ( rem_hi >= test_div )
+        {
+          rem_hi -= test_div;
+          root   += 1;
+        }
+      } while ( --count );
+    }
+
+    return (FT_Int32)root;
+  }
+
+#endif /* 0 */
+
+
+  /* documentation is in ftcalc.h */
+
+  FT_BASE_DEF( FT_Int )
+  ft_corner_orientation( FT_Pos  in_x,
+                         FT_Pos  in_y,
+                         FT_Pos  out_x,
+                         FT_Pos  out_y )
+  {
+#ifdef FT_LONG64
+
+    FT_Int64  delta = (FT_Int64)in_x * out_y - (FT_Int64)in_y * out_x;
+
+
+    return ( delta > 0 ) - ( delta < 0 );
+
+#else
+
+    FT_Int  result;
+
+
+    /* we silently ignore overflow errors, since such large values */
+    /* lead to even more (harmless) rendering errors later on      */
+    if ( ADD_LONG( FT_ABS( in_x ), FT_ABS( out_y ) ) <= 131071L &&
+         ADD_LONG( FT_ABS( in_y ), FT_ABS( out_x ) ) <= 131071L )
+    {
+      FT_Long  z1 = MUL_LONG( in_x, out_y );
+      FT_Long  z2 = MUL_LONG( in_y, out_x );
+
+
+      if ( z1 > z2 )
+        result = +1;
+      else if ( z1 < z2 )
+        result = -1;
+      else
+        result = 0;
+    }
+    else /* products might overflow 32 bits */
+    {
+      FT_Int64  z1, z2;
+
+
+      /* XXX: this function does not allow 64-bit arguments */
+      ft_multo64( (FT_UInt32)in_x, (FT_UInt32)out_y, &z1 );
+      ft_multo64( (FT_UInt32)in_y, (FT_UInt32)out_x, &z2 );
+
+      if ( z1.hi > z2.hi )
+        result = +1;
+      else if ( z1.hi < z2.hi )
+        result = -1;
+      else if ( z1.lo > z2.lo )
+        result = +1;
+      else if ( z1.lo < z2.lo )
+        result = -1;
+      else
+        result = 0;
+    }
+
+    /* XXX: only the sign of return value, +1/0/-1 must be used */
+    return result;
+
+#endif
+  }
+
+
+  /* documentation is in ftcalc.h */
+
+  FT_BASE_DEF( FT_Int )
+  ft_corner_is_flat( FT_Pos  in_x,
+                     FT_Pos  in_y,
+                     FT_Pos  out_x,
+                     FT_Pos  out_y )
+  {
+    FT_Pos  ax = in_x + out_x;
+    FT_Pos  ay = in_y + out_y;
+
+    FT_Pos  d_in, d_out, d_hypot;
+
+
+    /* The idea of this function is to compare the length of the */
+    /* hypotenuse with the `in' and `out' length.  The `corner'  */
+    /* represented by `in' and `out' is flat if the hypotenuse's */
+    /* length isn't too large.                                   */
+    /*                                                           */
+    /* This approach has the advantage that the angle between    */
+    /* `in' and `out' is not checked.  In case one of the two    */
+    /* vectors is `dominant', this is, much larger than the      */
+    /* other vector, we thus always have a flat corner.          */
+    /*                                                           */
+    /*                hypotenuse                                 */
+    /*       x---------------------------x                       */
+    /*        \                      /                           */
+    /*         \                /                                */
+    /*      in  \          /  out                                */
+    /*           \    /                                          */
+    /*            o                                              */
+    /*              Point                                        */
+
+    d_in    = FT_HYPOT(  in_x,  in_y );
+    d_out   = FT_HYPOT( out_x, out_y );
+    d_hypot = FT_HYPOT(    ax,    ay );
+
+    /* now do a simple length comparison: */
+    /*                                    */
+    /*   d_in + d_out < 17/16 d_hypot     */
+
+    return ( d_in + d_out - d_hypot ) < ( d_hypot >> 4 );
+  }
+
+
+/* END */