1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
|
# instructions
the base instruction set (some instructions may be undocumented)
table of contents:
- [ADD](#add)
- [AND](#and)
- [CLR](#clr)
- [CMP](#cmp)
- [CMR](#cmr)
- [CRR](#crr)
- [DBG](#dbg)
- [DIV](#div)
- [HALT](#halt)
- [JMP](#jmp)
- [JMR](#jmr)
- [JNZ](#jnz)
- [JNZR](#jnzr)
- [JZ](#jz)
- [LD](#ld)
- [LDM](#ldm)
- [LDR](#ldr)
- [MOD](#mod)
- [MOV](#mov)
- [MUL](#mul)
- [NOT](#not)
- [OR](#or)
- [PUT](#put)
- [RET](#ret)
- [SHL](#SHL)
- [SHR](#SHR)
- [SRM](#srm)
- [SRR](#srr)
- [STR](#str)
- [SUB](#sub)
- [SWP](#swp)
- [SWPM](#swpm)
- [SYS](#sys)
+ [read (0)](#read-0)
+ [write (1)](#read-1)
+ [set raw (2)](#set-raw-2)
- [XOR](#xor)
## ADD
add
usage:
```
add
```
adds registers `a` and `b` and puts the output in `c`
## AND
bitwise and
usage:
```
and
```
bitwise and's registers `a` and `b` and puts the output in `c`
## CLR
clear return buffer
usage:
```
clr
```
pops the most recent value from the return stack
## CMP
compare
usage:
```
cmp (reg1) (value)
```
compares reg1 and value, if equal, sets return flag to 1, else sets it to 0
## CMR
compare register
usage:
```
cmr (reg1) (reg2)
```
compares reg1 and reg2, if equal, sets return flag to 1, else sets it to 0
## CRR
compare register register
usage:
```
cmr (reg1) (reg2) (reg3)
```
compares reg2 and reg3, if equal, sets reg1 1, else sets it to 0
## DBG
debug
usage:
```
dbg (breakpoint name)
```
dumps ram and halts executing until the user presses enter
## DIV
divide
usage:
```
div
```
divides register `a` by register `b` and stores output in `c`, the output is floored
## HALT
halt
usage:
```
halt
```
halts the CPU
## JMP
jump
usage:
```
jmp (line)
```
jumps to line
## JMR
jump with return
usage:
```
jmp (line)
```
same as jump, but adds the original line to the return stack
## JNZ
jump if non-zero
usage:
```
jnz (line)
```
jump to line if the return flag is not zero
## JNZR
jump if non-zero compare (deprecated)
usage:
```
jnzr (reg1) (reg2)
```
jumps to line at reg1 if reg2 is not zero, deprecated, use [`jnz`](#jnz) and [`cmp`](#cmp) instead
## JZ
jump if zero
usage:
```
jnz (line)
```
jump to line if the return flag is zero
## LD
load from memory
usage:
```
ld (reg) (addr)
```
loads data at address addr into register reg
## LDM
load from memory from memory (deprecated)
usage:
```
ldm (reg) (addr)
```
loads data at address at address addr into register reg, deprecated, use [`ld`](#ld) and [`ldr`](#ldr) instead
## LDR
load from memory at register
usage:
```
ld (reg1) (reg2)
```
loads data at address at reg1 into register reg2
## MOD
modulo
usage:
```
mod
```
does the modulo operation on `a` and `b` and stores in `c`
## MOV
see [`put`](#put)
## MUL
multiply
usage:
```
mul
```
multiplies `a` by `b` and stores in `c`
## NOT
bitwise not
usage:
```
not
```
bitwise not's register `a` and puts the output in `c`
## OR
bitwise or
usage:
```
or
```
bitwise or's registers `a` and `b` and puts the output in `c`
## PUT
put
usage:
```
put (reg) (num)
```
puts num in register reg
## RET
return
usage:
```
ret
```
returns to last value in return stack
## SHL
shift left
usage:
```
shl (reg) (by)
```
shifts the value of `reg` to the left by `by`
## SHR
shift right
usage:
```
shr (reg) (by)
```
shifts the value of `reg` to the right by `by`
## SRM
deprecated
im too lazy to document this, basically the [`ldm`](#ldm) of [`str`](#str), use [`srr`](#srr) instead
## SRR
store register
usage:
```
srr (reg1) (reg2)
```
store value of reg1 at address in reg2
## STR
store
usage:
```
srr (reg1) (addr)
```
store value of reg1 at address addr
## SUB
subtract
usage:
```
sub
```
subtracts register `b` from register `a` and puts the output in `c`
## SWP
swap
usage:
```
swp (reg1) (reg2)
```
swaps registers reg1 and reg2
## SWPM
swap memory
usage:
```
swp (reg1) (reg2)
```
swaps addresses at reg1 and at reg2
## SYS
syscall
usage:
```
sys (syscall_id) (...args)
```
syscall, used for interacting with the system
NOTE: the arguments for the syscall are stored in the registers `a` `b` and `c`, not in the instruction call
syscalls:
### read (0)
```
sys 0 (fd) (addr)
```
reads data from file descriptor fd and puts it in ram, starting with addr, the data is null (0x00) terminated
the most common file descriptor you'll see is 0, stdin
also sets register `a` to the length of the read input
### write (1)
```
sys 1 (fd) (addr)
```
write data starting from addr (null-terminated) into file descriptor fd
### set raw (2)
```
sys 1 (raw?)
```
set tty raw mode
## XOR
bitwise exclusive or
usage:
```
xor
```
bitwise xor's registers `a` and `b` and puts the output in `c`
|