#include "Vorbis.h" #include "Logger.h" #include "Platform.h" #include "Event.h" #include "ExtMath.h" #include "Funcs.h" #include "Errors.h" #include "Stream.h" /*########################################################################################################################* *-------------------------------------------------------Ogg stream--------------------------------------------------------* *#########################################################################################################################*/ #define OGG_FourCC(a, b, c, d) (((cc_uint32)a << 24) | ((cc_uint32)b << 16) | ((cc_uint32)c << 8) | (cc_uint32)d) /* See https://xiph.org/ogg/ */ static void Ogg_DiscardPacket(struct OggState* ctx) { ctx->cur += ctx->left; ctx->left = 0; } static void Ogg_NextPacket(struct OggState* ctx) { cc_uint8 part; ctx->left = 0; for (; ctx->segmentsRead < ctx->numSegments; ) { part = ctx->segments[ctx->segmentsRead++]; ctx->left += part; if (part != 255) break; /* end of this packet */ } } static cc_result Ogg_NextPage(struct OggState* ctx) { cc_uint8 header[27]; struct Stream* source; cc_uint32 sig, size; cc_result res; int i; /* OGG page format: * header[0] (4) page signature * header[4] (1) page version * header[5] (1) page flags * header[6] (8) granule position * header[14] (4) serial number * header[18] (4) page sequence number * header[22] (4) page checksum * header[26] (1) number of segments * [number of segments] number of bytes in each segment * [sum of bytes in each segment] page data */ /* An OGG page is then further split into one or more packets */ source = ctx->source; if ((res = Stream_Read(source, header, sizeof(header)))) return res; sig = Stream_GetU32_BE(&header[0]); if (sig == OGG_FourCC('I','D','3', 2)) return AUDIO_ERR_MP3_SIG; /* ID3 v2.2 tags header */ if (sig == OGG_FourCC('I','D','3', 3)) return AUDIO_ERR_MP3_SIG; /* ID3 v2.3 tags header */ if (sig != OGG_FourCC('O','g','g','S')) return OGG_ERR_INVALID_SIG; if (header[4] != 0) return OGG_ERR_VERSION; ctx->segmentsRead = 0; ctx->numSegments = header[26]; if ((res = Stream_Read(source, ctx->segments, ctx->numSegments))) return res; size = 0; for (i = 0; i < ctx->numSegments; i++) size += ctx->segments[i]; if ((res = Stream_Read(source, ctx->buffer, size))) return res; ctx->cur = ctx->buffer; ctx->last = header[5] & 4; Ogg_NextPacket(ctx); return 0; } static cc_result Ogg_Read(struct OggState* ctx, cc_uint8* data, cc_uint32 count) { cc_uint32 left = count; cc_result res; while (left) { if (ctx->left) { count = min(left, ctx->left); Mem_Copy(data, ctx->cur, count); ctx->cur += count; ctx->left -= count; left -= count; } else if (ctx->segmentsRead < ctx->numSegments) { Ogg_NextPacket(ctx); } else { if (ctx->last) return ERR_END_OF_STREAM; if ((res = Ogg_NextPage(ctx))) return res; } } return 0; } static cc_result Ogg_Skip(struct OggState* ctx, cc_uint32 count) { cc_uint8 tmp[3584]; /* not quite 4 KB to avoid chkstk call */ cc_uint32 left = count; cc_result res; /* TODO: Should Ogg_Read be duplicated here to avoid Mem_Copy call? */ /* Probably not worth it considering how small comments are */ while (left) { count = min(left, sizeof(tmp)); if ((res = Ogg_Read(ctx, tmp, count))) return res; left -= count; } return 0; } static cc_result Ogg_ReadU8(struct OggState* ctx, cc_uint8* data) { /* The fast path below almost always gets used */ if (!ctx->left) return Ogg_Read(ctx, data, 1); *data = *ctx->cur; ctx->cur++; ctx->left--; return 0; } static cc_result Ogg_ReadU32(struct OggState* ctx, cc_uint32* value) { cc_uint8 data[4]; cc_result res; if ((res = Ogg_Read(ctx, data, 4))) return res; *value = Stream_GetU32_LE(data); return 0; } void Ogg_Init(struct OggState* ctx, struct Stream* source) { ctx->cur = ctx->buffer; ctx->left = 0; ctx->last = 0; ctx->source = source; ctx->segmentsRead = 0; ctx->numSegments = 0; } /*########################################################################################################################* *------------------------------------------------------Vorbis utils-------------------------------------------------------* *#########################################################################################################################*/ #define Vorbis_PushByte(ctx, value) ctx->Bits |= (cc_uint32)(value) << ctx->NumBits; ctx->NumBits += 8; #define Vorbis_PeekBits(ctx, bits) (ctx->Bits & ((1UL << (bits)) - 1UL)) #define Vorbis_ConsumeBits(ctx, bits) ctx->Bits >>= (bits); ctx->NumBits -= (bits); /* Aligns bit buffer to be on a byte boundary */ #define Vorbis_AlignBits(ctx) alignSkip = ctx->NumBits & 7; Vorbis_ConsumeBits(ctx, alignSkip); /* See https://xiph.org/vorbis/doc/Vorbis_I_spec.html */ /* TODO: Make sure this is inlined */ static cc_uint32 Vorbis_ReadBits(struct VorbisState* ctx, cc_uint32 bitsCount) { cc_uint8 portion; cc_uint32 data; cc_result res; while (ctx->NumBits < bitsCount) { res = Ogg_ReadU8(ctx->source, &portion); if (res) { Logger_Abort2(res, "Failed to read byte for vorbis"); } Vorbis_PushByte(ctx, portion); } data = Vorbis_PeekBits(ctx, bitsCount); Vorbis_ConsumeBits(ctx, bitsCount); return data; } static cc_result Vorbis_TryReadBits(struct VorbisState* ctx, cc_uint32 bitsCount, cc_uint32* data) { cc_uint8 portion; cc_result res; while (ctx->NumBits < bitsCount) { res = Ogg_ReadU8(ctx->source, &portion); if (res) return res; Vorbis_PushByte(ctx, portion); } *data = Vorbis_PeekBits(ctx, bitsCount); Vorbis_ConsumeBits(ctx, bitsCount); return 0; } static cc_uint32 Vorbis_ReadBit(struct VorbisState* ctx) { cc_uint8 portion; cc_uint32 data; cc_result res; if (!ctx->NumBits) { res = Ogg_ReadU8(ctx->source, &portion); if (res) { Logger_Abort2(res, "Failed to read byte for vorbis"); } Vorbis_PushByte(ctx, portion); } data = Vorbis_PeekBits(ctx, 1); Vorbis_ConsumeBits(ctx, 1); return data; } /* Vorbis spec 9.2.1. ilog */ static int iLog(int x) { int bits = 0; while (x > 0) { bits++; x >>= 1; } return bits; } /* https://en.wikipedia.org/wiki/Single-precision_floating-point_format */ /* Float consists of: */ /* - 1 bit for sign */ /* - 8 bits for biased exponent */ /* - 23 bits for mantissa */ #define FLT_SIGN_MASK 0x80000000 #define FLT_EXPONENT_BIAS 127 #define FLT_EXPONENT_SHIFT 23 #define FLT_EXPONENT_MASK 0x7F800000 #define FLT_MANTISSA_MASK 0x007FFFFF /* returns m * 2^exp */ static float Fast_ldexpf(int m, int exp) { union IntAndFloat raw; int e; raw.f = m; e = (raw.i & FLT_EXPONENT_MASK) >> FLT_EXPONENT_SHIFT; e -= FLT_EXPONENT_BIAS; e += exp; /* Treat denormal exponents as just +-0 */ if (e < -126) return m < 0 ? -0.0f : 0.0f; /* Treat large exponents as infinity */ if (e > 128) e = 128; e += FLT_EXPONENT_BIAS; raw.i = (e << FLT_EXPONENT_SHIFT) | (raw.i & (FLT_MANTISSA_MASK | FLT_SIGN_MASK)); return raw.f; } /* Vorbis spec 9.2.2. float32_unpack */ static float float32_unpack(struct VorbisState* ctx) { /* ReadBits can't reliably read over 24 bits */ cc_uint32 lo = Vorbis_ReadBits(ctx, 16); cc_uint32 hi = Vorbis_ReadBits(ctx, 16); cc_uint32 x = (hi << 16) | lo; cc_int32 mantissa = x & 0x1fffff; cc_uint32 exponent = (x & 0x7fe00000) >> 21; if (x & 0x80000000UL) mantissa = -mantissa; return Fast_ldexpf(mantissa, (int)exponent - 788); } /*########################################################################################################################* *----------------------------------------------------Vorbis codebooks-----------------------------------------------------* *#########################################################################################################################*/ /* Vorbis spec 3. Probability Model and Codebooks */ #define CODEBOOK_SYNC 0x564342 struct Codebook { cc_uint32 dimensions, entries, totalCodewords; cc_uint32* codewords; cc_uint32* values; cc_uint32 numCodewords[33]; /* number of codewords of bit length i */ /* vector quantisation values */ float minValue, deltaValue; cc_uint32 sequenceP, lookupType, lookupValues; cc_uint16* multiplicands; }; static void Codebook_Free(struct Codebook* c) { Mem_Free(c->codewords); Mem_Free(c->values); Mem_Free(c->multiplicands); } static cc_uint32 Codebook_Pow(cc_uint32 base, cc_uint32 exp) { cc_uint32 result = 1; /* exponentiation by squaring */ while (exp) { if (exp & 1) result *= base; exp >>= 1; base *= base; } return result; } static cc_uint32 Codebook_Lookup1Values(cc_uint32 entries, cc_uint32 dimensions) { cc_uint32 i, pow, next; /* the greatest integer value for which [value] to the power of [dimensions] is less than or equal to [entries] */ /* TODO: verify this */ for (i = 1; ; i++) { pow = Codebook_Pow(i, dimensions); next = Codebook_Pow(i + 1, dimensions); if (next < pow) return i; /* overflow */ if (pow == entries) return i; if (next > entries) return i; } return 0; } static cc_bool Codebook_CalcCodewords(struct Codebook* c, cc_uint8* len) { /* This is taken from stb_vorbis.c because I gave up trying */ cc_uint32 i, depth; cc_uint32 root, codeword; cc_uint32 next_codewords[33] = { 0 }; int offset; int len_offsets[33]; c->codewords = (cc_uint32*)Mem_Alloc(c->totalCodewords, 4, "codewords"); c->values = (cc_uint32*)Mem_Alloc(c->totalCodewords, 4, "values"); /* Codeword entries are ordered by length */ offset = 0; for (i = 0; i < Array_Elems(len_offsets); i++) { len_offsets[i] = offset; offset += c->numCodewords[i]; } /* add codeword 0 to tree */ for (i = 0; i < c->entries; i++) { if (!len[i]) continue; offset = len_offsets[len[i]]; c->codewords[offset] = 0; c->values[offset] = i; len_offsets[len[i]]++; break; } /* set codewords that new nodes can start from */ for (depth = 1; depth <= len[i]; depth++) { next_codewords[depth] = 1U << (32 - depth); } i++; /* first codeword was already handled */ for (; i < c->entries; i++) { root = len[i]; if (!root) continue; offset = len_offsets[len[i]]; /* per spec, find lowest possible value (leftmost) */ while (root && next_codewords[root] == 0) root--; if (root == 0) return false; codeword = next_codewords[root]; next_codewords[root] = 0; c->codewords[offset] = codeword; c->values[offset] = i; for (depth = len[i]; depth > root; depth--) { next_codewords[depth] = codeword + (1U << (32 - depth)); } len_offsets[len[i]]++; } return true; } static cc_result Codebook_DecodeSetup(struct VorbisState* ctx, struct Codebook* c) { cc_uint32 sync; cc_uint8* codewordLens; int i, entry; int sparse, len; int runBits, runLen; int valueBits; cc_uint32 lookupValues; sync = Vorbis_ReadBits(ctx, 24); if (sync != CODEBOOK_SYNC) return VORBIS_ERR_CODEBOOK_SYNC; c->dimensions = Vorbis_ReadBits(ctx, 16); c->entries = Vorbis_ReadBits(ctx, 24); codewordLens = (cc_uint8*)Mem_Alloc(c->entries, 1, "raw codeword lens"); for (i = 0; i < Array_Elems(c->numCodewords); i++) { c->numCodewords[i] = 0; } /* ordered entries flag */ if (!Vorbis_ReadBit(ctx)) { sparse = Vorbis_ReadBit(ctx); entry = 0; for (i = 0; i < c->entries; i++) { /* sparse trees may not have all entries */ if (sparse && !Vorbis_ReadBit(ctx)){ codewordLens[i] = 0; continue; /* unused entry */ } len = Vorbis_ReadBits(ctx, 5) + 1; codewordLens[i] = len; c->numCodewords[len]++; entry++; } } else { len = Vorbis_ReadBits(ctx, 5) + 1; for (entry = 0; entry < c->entries;) { runBits = iLog(c->entries - entry); runLen = Vorbis_ReadBits(ctx, runBits); /* handle corrupted ogg files */ if (entry + runLen > c->entries) return VORBIS_ERR_CODEBOOK_ENTRY; for (i = 0; i < runLen; i++) { codewordLens[entry++] = len; } c->numCodewords[len++] = runLen; } } c->totalCodewords = entry; Codebook_CalcCodewords(c, codewordLens); Mem_Free(codewordLens); c->lookupType = Vorbis_ReadBits(ctx, 4); c->multiplicands = NULL; if (c->lookupType == 0) return 0; if (c->lookupType > 2) return VORBIS_ERR_CODEBOOK_LOOKUP; c->minValue = float32_unpack(ctx); c->deltaValue = float32_unpack(ctx); valueBits = Vorbis_ReadBits(ctx, 4) + 1; c->sequenceP = Vorbis_ReadBit(ctx); if (c->lookupType == 1) { lookupValues = Codebook_Lookup1Values(c->entries, c->dimensions); } else { lookupValues = c->entries * c->dimensions; } c->lookupValues = lookupValues; c->multiplicands = (cc_uint16*)Mem_Alloc(lookupValues, 2, "multiplicands"); for (i = 0; i < lookupValues; i++) { c->multiplicands[i] = Vorbis_ReadBits(ctx, valueBits); } return 0; } static cc_uint32 Codebook_DecodeScalar(struct VorbisState* ctx, struct Codebook* c) { cc_uint32 codeword = 0, shift = 31, depth, i; cc_uint32* codewords = c->codewords; cc_uint32* values = c->values; /* TODO: This is so massively slow */ for (depth = 1; depth <= 32; depth++, shift--) { codeword |= Vorbis_ReadBit(ctx) << shift; for (i = 0; i < c->numCodewords[depth]; i++) { if (codeword != codewords[i]) continue; return values[i]; } codewords += c->numCodewords[depth]; values += c->numCodewords[depth]; } Logger_Abort("Invalid huffman code"); return -1; } static void Codebook_DecodeVectors(struct VorbisState* ctx, struct Codebook* c, float* v, int step) { cc_uint32 lookupOffset = Codebook_DecodeScalar(ctx, c); float last = 0.0f, value; cc_uint32 i, offset; if (c->lookupType == 1) { cc_uint32 indexDivisor = 1; for (i = 0; i < c->dimensions; i++, v += step) { offset = (lookupOffset / indexDivisor) % c->lookupValues; value = c->multiplicands[offset] * c->deltaValue + c->minValue + last; *v += value; if (c->sequenceP) last = value; indexDivisor *= c->lookupValues; } } else if (c->lookupType == 2) { offset = lookupOffset * c->dimensions; for (i = 0; i < c->dimensions; i++, offset++, v += step) { value = c->multiplicands[offset] * c->deltaValue + c->minValue + last; *v += value; if (c->sequenceP) last = value; } } else { Logger_Abort("Invalid huffman code"); } } /*########################################################################################################################* *-----------------------------------------------------Vorbis floors-------------------------------------------------------* *#########################################################################################################################*/ #define FLOOR_MAX_PARTITIONS 32 #define FLOOR_MAX_CLASSES 16 #define FLOOR_MAX_VALUES (FLOOR_MAX_PARTITIONS * 8 + 2) struct Floor { cc_uint8 partitions, multiplier; int range, values; cc_uint8 partitionClasses[FLOOR_MAX_PARTITIONS]; cc_uint8 classDimensions[FLOOR_MAX_CLASSES]; cc_uint8 classSubClasses[FLOOR_MAX_CLASSES]; cc_uint8 classMasterbooks[FLOOR_MAX_CLASSES]; cc_int16 subclassBooks[FLOOR_MAX_CLASSES][8]; cc_int16 xList[FLOOR_MAX_VALUES]; cc_uint16 listOrder[FLOOR_MAX_VALUES]; cc_int32 yList[VORBIS_MAX_CHANS][FLOOR_MAX_VALUES]; }; /* Vorbis spec 10.1. floor1_inverse_dB_table */ static const float floor1_inverse_dB_table[256] = { 1.0649863e-07f, 1.1341951e-07f, 1.2079015e-07f, 1.2863978e-07f, 1.3699951e-07f, 1.4590251e-07f, 1.5538408e-07f, 1.6548181e-07f, 1.7623575e-07f, 1.8768855e-07f, 1.9988561e-07f, 2.1287530e-07f, 2.2670913e-07f, 2.4144197e-07f, 2.5713223e-07f, 2.7384213e-07f, 2.9163793e-07f, 3.1059021e-07f, 3.3077411e-07f, 3.5226968e-07f, 3.7516214e-07f, 3.9954229e-07f, 4.2550680e-07f, 4.5315863e-07f, 4.8260743e-07f, 5.1396998e-07f, 5.4737065e-07f, 5.8294187e-07f, 6.2082472e-07f, 6.6116941e-07f, 7.0413592e-07f, 7.4989464e-07f, 7.9862701e-07f, 8.5052630e-07f, 9.0579828e-07f, 9.6466216e-07f, 1.0273513e-06f, 1.0941144e-06f, 1.1652161e-06f, 1.2409384e-06f, 1.3215816e-06f, 1.4074654e-06f, 1.4989305e-06f, 1.5963394e-06f, 1.7000785e-06f, 1.8105592e-06f, 1.9282195e-06f, 2.0535261e-06f, 2.1869758e-06f, 2.3290978e-06f, 2.4804557e-06f, 2.6416497e-06f, 2.8133190e-06f, 2.9961443e-06f, 3.1908506e-06f, 3.3982101e-06f, 3.6190449e-06f, 3.8542308e-06f, 4.1047004e-06f, 4.3714470e-06f, 4.6555282e-06f, 4.9580707e-06f, 5.2802740e-06f, 5.6234160e-06f, 5.9888572e-06f, 6.3780469e-06f, 6.7925283e-06f, 7.2339451e-06f, 7.7040476e-06f, 8.2047000e-06f, 8.7378876e-06f, 9.3057248e-06f, 9.9104632e-06f, 1.0554501e-05f, 1.1240392e-05f, 1.1970856e-05f, 1.2748789e-05f, 1.3577278e-05f, 1.4459606e-05f, 1.5399272e-05f, 1.6400004e-05f, 1.7465768e-05f, 1.8600792e-05f, 1.9809576e-05f, 2.1096914e-05f, 2.2467911e-05f, 2.3928002e-05f, 2.5482978e-05f, 2.7139006e-05f, 2.8902651e-05f, 3.0780908e-05f, 3.2781225e-05f, 3.4911534e-05f, 3.7180282e-05f, 3.9596466e-05f, 4.2169667e-05f, 4.4910090e-05f, 4.7828601e-05f, 5.0936773e-05f, 5.4246931e-05f, 5.7772202e-05f, 6.1526565e-05f, 6.5524908e-05f, 6.9783085e-05f, 7.4317983e-05f, 7.9147585e-05f, 8.4291040e-05f, 8.9768747e-05f, 9.5602426e-05f, 0.00010181521f, 0.00010843174f, 0.00011547824f, 0.00012298267f, 0.00013097477f, 0.00013948625f, 0.00014855085f, 0.00015820453f, 0.00016848555f, 0.00017943469f, 0.00019109536f, 0.00020351382f, 0.00021673929f, 0.00023082423f, 0.00024582449f, 0.00026179955f, 0.00027881276f, 0.00029693158f, 0.00031622787f, 0.00033677814f, 0.00035866388f, 0.00038197188f, 0.00040679456f, 0.00043323036f, 0.00046138411f, 0.00049136745f, 0.00052329927f, 0.00055730621f, 0.00059352311f, 0.00063209358f, 0.00067317058f, 0.00071691700f, 0.00076350630f, 0.00081312324f, 0.00086596457f, 0.00092223983f, 0.00098217216f, 0.0010459992f, 0.0011139742f, 0.0011863665f, 0.0012634633f, 0.0013455702f, 0.0014330129f, 0.0015261382f, 0.0016253153f, 0.0017309374f, 0.0018434235f, 0.0019632195f, 0.0020908006f, 0.0022266726f, 0.0023713743f, 0.0025254795f, 0.0026895994f, 0.0028643847f, 0.0030505286f, 0.0032487691f, 0.0034598925f, 0.0036847358f, 0.0039241906f, 0.0041792066f, 0.0044507950f, 0.0047400328f, 0.0050480668f, 0.0053761186f, 0.0057254891f, 0.0060975636f, 0.0064938176f, 0.0069158225f, 0.0073652516f, 0.0078438871f, 0.0083536271f, 0.0088964928f, 0.009474637f, 0.010090352f, 0.010746080f, 0.011444421f, 0.012188144f, 0.012980198f, 0.013823725f, 0.014722068f, 0.015678791f, 0.016697687f, 0.017782797f, 0.018938423f, 0.020169149f, 0.021479854f, 0.022875735f, 0.024362330f, 0.025945531f, 0.027631618f, 0.029427276f, 0.031339626f, 0.033376252f, 0.035545228f, 0.037855157f, 0.040315199f, 0.042935108f, 0.045725273f, 0.048696758f, 0.051861348f, 0.055231591f, 0.058820850f, 0.062643361f, 0.066714279f, 0.071049749f, 0.075666962f, 0.080584227f, 0.085821044f, 0.091398179f, 0.097337747f, 0.10366330f, 0.11039993f, 0.11757434f, 0.12521498f, 0.13335215f, 0.14201813f, 0.15124727f, 0.16107617f, 0.17154380f, 0.18269168f, 0.19456402f, 0.20720788f, 0.22067342f, 0.23501402f, 0.25028656f, 0.26655159f, 0.28387361f, 0.30232132f, 0.32196786f, 0.34289114f, 0.36517414f, 0.38890521f, 0.41417847f, 0.44109412f, 0.46975890f, 0.50028648f, 0.53279791f, 0.56742212f, 0.60429640f, 0.64356699f, 0.68538959f, 0.72993007f, 0.77736504f, 0.82788260f, 0.88168307f, 0.9389798f, 1.00000000f, }; /* TODO: Make this thread safe */ static cc_int16* tmp_xlist; static cc_uint16* tmp_order; static void Floor_SortXList(int left, int right) { cc_uint16* values = tmp_order; cc_uint16 value; cc_int16* keys = tmp_xlist; cc_int16 key; while (left < right) { int i = left, j = right; cc_int16 pivot = keys[(i + j) >> 1]; /* partition the list */ while (i <= j) { while (pivot > keys[i]) i++; while (pivot < keys[j]) j--; QuickSort_Swap_KV_Maybe(); } /* recurse into the smaller subset */ QuickSort_Recurse(Floor_SortXList) } } static cc_result Floor_DecodeSetup(struct VorbisState* ctx, struct Floor* f) { static const short ranges[4] = { 256, 128, 84, 64 }; int i, j, idx, maxClass; int rangeBits, classNum; cc_int16 xlist_sorted[FLOOR_MAX_VALUES]; f->partitions = Vorbis_ReadBits(ctx, 5); maxClass = -1; for (i = 0; i < f->partitions; i++) { f->partitionClasses[i] = Vorbis_ReadBits(ctx, 4); maxClass = max(maxClass, f->partitionClasses[i]); } for (i = 0; i <= maxClass; i++) { f->classDimensions[i] = Vorbis_ReadBits(ctx, 3) + 1; f->classSubClasses[i] = Vorbis_ReadBits(ctx, 2); if (f->classSubClasses[i]) { f->classMasterbooks[i] = Vorbis_ReadBits(ctx, 8); } for (j = 0; j < (1 << f->classSubClasses[i]); j++) { f->subclassBooks[i][j] = (cc_int16)Vorbis_ReadBits(ctx, 8) - 1; } } f->multiplier = Vorbis_ReadBits(ctx, 2) + 1; f->range = ranges[f->multiplier - 1]; rangeBits = Vorbis_ReadBits(ctx, 4); f->xList[0] = 0; f->xList[1] = 1 << rangeBits; for (i = 0, idx = 2; i < f->partitions; i++) { classNum = f->partitionClasses[i]; for (j = 0; j < f->classDimensions[classNum]; j++) { f->xList[idx++] = Vorbis_ReadBits(ctx, rangeBits); } } f->values = idx; /* sort X list for curve computation later */ Mem_Copy(xlist_sorted, f->xList, idx * 2); for (i = 0; i < idx; i++) { f->listOrder[i] = i; } tmp_xlist = xlist_sorted; tmp_order = f->listOrder; Floor_SortXList(0, idx - 1); return 0; } static cc_bool Floor_DecodeFrame(struct VorbisState* ctx, struct Floor* f, int ch) { cc_int32* yList; int i, j, idx, rangeBits; cc_uint8 klass, cdim, cbits; int bookNum; cc_uint32 csub, cval; /* does this frame have any energy */ if (!Vorbis_ReadBit(ctx)) return false; yList = f->yList[ch]; rangeBits = iLog(f->range - 1); yList[0] = Vorbis_ReadBits(ctx, rangeBits); yList[1] = Vorbis_ReadBits(ctx, rangeBits); for (i = 0, idx = 2; i < f->partitions; i++) { klass = f->partitionClasses[i]; cdim = f->classDimensions[klass]; cbits = f->classSubClasses[klass]; csub = (1 << cbits) - 1; cval = 0; if (cbits) { bookNum = f->classMasterbooks[klass]; cval = Codebook_DecodeScalar(ctx, &ctx->codebooks[bookNum]); } for (j = 0; j < cdim; j++) { bookNum = f->subclassBooks[klass][cval & csub]; cval >>= cbits; if (bookNum >= 0) { yList[idx + j] = Codebook_DecodeScalar(ctx, &ctx->codebooks[bookNum]); } else { yList[idx + j] = 0; } } idx += cdim; } return true; } /* Vorbis spec 9.2.6. render_point */ static int Floor_RenderPoint(int x0, int y0, int x1, int y1, int X) { int dy = y1 - y0, adx = x1 - x0; int ady = Math_AbsI(dy); int err = ady * (X - x0); int off = err / adx; if (dy < 0) { return y0 - off; } else { return y0 + off; } } /* Vorbis spec 9.2.7. render_line */ static void Floor_RenderLine(int x0, int y0, int x1, int y1, float* data) { int dy = y1 - y0, adx = x1 - x0; int ady = Math_AbsI(dy); int base = dy / adx, sy; int x = x0, y = y0, err = 0; if (dy < 0) { sy = base - 1; } else { sy = base + 1; } ady = ady - Math_AbsI(base) * adx; data[x] *= floor1_inverse_dB_table[y]; for (x = x0 + 1; x < x1; x++) { err = err + ady; if (err >= adx) { err = err - adx; y = y + sy; } else { y = y + base; } data[x] *= floor1_inverse_dB_table[y]; } } /* Vorbis spec 9.2.4. low_neighbor */ static int low_neighbor(cc_int16* v, int x) { int n = 0, i, max = Int32_MinValue; for (i = 0; i < x; i++) { if (v[i] < v[x] && v[i] > max) { n = i; max = v[i]; } } return n; } /* Vorbis spec 9.2.5. high_neighbor */ static int high_neighbor(cc_int16* v, int x) { int n = 0, i, min = Int32_MaxValue; for (i = 0; i < x; i++) { if (v[i] > v[x] && v[i] < min) { n = i; min = v[i]; } } return n; } static void Floor_Synthesis(struct VorbisState* ctx, struct Floor* f, int ch) { /* amplitude arrays */ cc_int32 YFinal[FLOOR_MAX_VALUES]; cc_bool Step2[FLOOR_MAX_VALUES]; cc_int32* yList; float* data; /* amplitude variables */ int lo_offset, hi_offset, predicted; int val, highroom, lowroom, room; int i; /* curve variables */ int lx, hx, ly, hy; int rawI; float value; /* amplitude value synthesis */ yList = f->yList[ch]; data = ctx->curOutput[ch]; Step2[0] = true; Step2[1] = true; YFinal[0] = yList[0]; YFinal[1] = yList[1]; for (i = 2; i < f->values; i++) { lo_offset = low_neighbor(f->xList, i); hi_offset = high_neighbor(f->xList, i); predicted = Floor_RenderPoint(f->xList[lo_offset], YFinal[lo_offset], f->xList[hi_offset], YFinal[hi_offset], f->xList[i]); val = yList[i]; highroom = f->range - predicted; lowroom = predicted; if (highroom < lowroom) { room = highroom * 2; } else { room = lowroom * 2; } if (val) { Step2[lo_offset] = true; Step2[hi_offset] = true; Step2[i] = true; if (val >= room) { if (highroom > lowroom) { YFinal[i] = val - lowroom + predicted; } else { YFinal[i] = predicted - val + highroom - 1; } } else { if (val & 1) { YFinal[i] = predicted - (val + 1) / 2; } else { YFinal[i] = predicted + val / 2; } } } else { Step2[i] = false; YFinal[i] = predicted; } } /* curve synthesis */ lx = 0; ly = YFinal[f->listOrder[0]] * f->multiplier; hx = 0; hy = ly; for (rawI = 1; rawI < f->values; rawI++) { i = f->listOrder[rawI]; if (!Step2[i]) continue; hx = f->xList[i]; hy = YFinal[i] * f->multiplier; if (lx < hx) { Floor_RenderLine(lx, ly, min(hx, ctx->dataSize), hy, data); } lx = hx; ly = hy; } /* fill remainder of floor with a flat line */ /* TODO: Is this right? should hy be 0, if Step2 is false for all */ if (hx >= ctx->dataSize) return; lx = hx; hx = ctx->dataSize; value = floor1_inverse_dB_table[hy]; for (; lx < hx; lx++) { data[lx] *= value; } } /*########################################################################################################################* *----------------------------------------------------Vorbis residues------------------------------------------------------* *#########################################################################################################################*/ #define RESIDUE_MAX_CLASSIFICATIONS 65 struct Residue { cc_uint8 type, classifications, classbook; cc_uint32 begin, end, partitionSize; cc_uint8 cascade[RESIDUE_MAX_CLASSIFICATIONS]; cc_int16 books[RESIDUE_MAX_CLASSIFICATIONS][8]; }; static cc_result Residue_DecodeSetup(struct VorbisState* ctx, struct Residue* r, int type) { cc_int16 codebook; int i, j; r->type = (cc_uint8)type; r->begin = Vorbis_ReadBits(ctx, 24); r->end = Vorbis_ReadBits(ctx, 24); r->partitionSize = Vorbis_ReadBits(ctx, 24) + 1; r->classifications = Vorbis_ReadBits(ctx, 6) + 1; r->classbook = Vorbis_ReadBits(ctx, 8); for (i = 0; i < r->classifications; i++) { r->cascade[i] = Vorbis_ReadBits(ctx, 3); if (!Vorbis_ReadBit(ctx)) continue; r->cascade[i] |= Vorbis_ReadBits(ctx, 5) << 3; } for (i = 0; i < r->classifications; i++) { for (j = 0; j < 8; j++) { codebook = -1; if (r->cascade[i] & (1 << j)) { codebook = Vorbis_ReadBits(ctx, 8); } r->books[i][j] = codebook; } } return 0; } static void Residue_DecodeCore(struct VorbisState* ctx, struct Residue* r, cc_uint32 size, int ch, cc_bool* doNotDecode, float** data) { struct Codebook* classbook; cc_uint32 residueBeg, residueEnd; cc_uint32 classwordsPerCodeword; cc_uint32 nToRead, partitionsToRead; int pass, i, j, k; /* classification variables */ cc_uint8* classifications[VORBIS_MAX_CHANS]; cc_uint8* classifications_raw; cc_uint32 temp; /* partition variables */ struct Codebook* c; float* v; cc_uint32 offset; cc_uint8 klass; cc_int16 book; /* per spec, ensure decoded bounds are actually in size */ residueBeg = min(r->begin, size); residueEnd = min(r->end, size); classbook = &ctx->codebooks[r->classbook]; classwordsPerCodeword = classbook->dimensions; nToRead = residueEnd - residueBeg; partitionsToRead = nToRead / r->partitionSize; /* first half of temp array is used by residue type 2 for storing temp interleaved data */ classifications_raw = ((cc_uint8*)ctx->temp) + (ctx->dataSize * ctx->channels * 5); for (i = 0; i < ch; i++) { /* add a bit of space in case classwordsPerCodeword is > partitionsToRead*/ classifications[i] = classifications_raw + i * (partitionsToRead + 64); } if (nToRead == 0) return; for (pass = 0; pass < 8; pass++) { cc_uint32 partitionCount = 0; while (partitionCount < partitionsToRead) { /* read classifications in pass 0 */ if (pass == 0) { for (j = 0; j < ch; j++) { if (doNotDecode[j]) continue; temp = Codebook_DecodeScalar(ctx, classbook); for (i = classwordsPerCodeword - 1; i >= 0; i--) { classifications[j][i + partitionCount] = temp % r->classifications; temp /= r->classifications; } } } for (i = 0; i < classwordsPerCodeword && partitionCount < partitionsToRead; i++) { for (j = 0; j < ch; j++) { if (doNotDecode[j]) continue; klass = classifications[j][partitionCount]; book = r->books[klass][pass]; if (book < 0) continue; offset = residueBeg + partitionCount * r->partitionSize; v = data[j] + offset; c = &ctx->codebooks[book]; if (r->type == 0) { int step = r->partitionSize / c->dimensions; for (k = 0; k < step; k++) { Codebook_DecodeVectors(ctx, c, v, step); v++; } } else { for (k = 0; k < r->partitionSize; k += c->dimensions) { Codebook_DecodeVectors(ctx, c, v, 1); v += c->dimensions; } } } partitionCount++; } } } } static void Residue_DecodeFrame(struct VorbisState* ctx, struct Residue* r, int ch, cc_bool* doNotDecode, float** data) { cc_uint32 size = ctx->dataSize; float* interleaved; cc_bool decodeAny; int i, j; if (r->type == 2) { decodeAny = false; /* type 2 decodes all channel vectors, if at least 1 channel to decode */ for (i = 0; i < ch; i++) { if (!doNotDecode[i]) decodeAny = true; } if (!decodeAny) return; decodeAny = false; /* because DecodeCore expects this to be 'false' for 'do not decode' */ interleaved = ctx->temp; /* TODO: avoid using ctx->temp and deinterleaving at all */ /* TODO: avoid setting memory to 0 here */ Mem_Set(interleaved, 0, ctx->dataSize * ctx->channels * sizeof(float)); Residue_DecodeCore(ctx, r, size * ch, 1, &decodeAny, &interleaved); /* deinterleave type 2 output */ for (i = 0; i < size; i++) { for (j = 0; j < ch; j++) { data[j][i] = interleaved[i * ch + j]; } } } else { Residue_DecodeCore(ctx, r, size, ch, doNotDecode, data); } } /*########################################################################################################################* *----------------------------------------------------Vorbis mappings------------------------------------------------------* *#########################################################################################################################*/ #define MAPPING_MAX_COUPLINGS 256 #define MAPPING_MAX_SUBMAPS 15 struct Mapping { cc_uint8 couplingSteps, submaps; cc_uint8 mux[VORBIS_MAX_CHANS]; cc_uint8 floorIdx[MAPPING_MAX_SUBMAPS]; cc_uint8 residueIdx[MAPPING_MAX_SUBMAPS]; cc_uint8 magnitude[MAPPING_MAX_COUPLINGS]; cc_uint8 angle[MAPPING_MAX_COUPLINGS]; }; static cc_result Mapping_DecodeSetup(struct VorbisState* ctx, struct Mapping* m) { int i, submaps, reserved; int couplingSteps, couplingBits; submaps = 1; if (Vorbis_ReadBit(ctx)) { submaps = Vorbis_ReadBits(ctx, 4) + 1; } couplingSteps = 0; if (Vorbis_ReadBit(ctx)) { couplingSteps = Vorbis_ReadBits(ctx, 8) + 1; /* TODO: How big can couplingSteps ever really get in practice? */ couplingBits = iLog(ctx->channels - 1); for (i = 0; i < couplingSteps; i++) { m->magnitude[i] = Vorbis_ReadBits(ctx, couplingBits); m->angle[i] = Vorbis_ReadBits(ctx, couplingBits); if (m->magnitude[i] == m->angle[i]) return VORBIS_ERR_MAPPING_CHANS; } } reserved = Vorbis_ReadBits(ctx, 2); if (reserved != 0) return VORBIS_ERR_MAPPING_RESERVED; m->submaps = submaps; m->couplingSteps = couplingSteps; if (submaps > 1) { for (i = 0; i < ctx->channels; i++) { m->mux[i] = Vorbis_ReadBits(ctx, 4); } } else { for (i = 0; i < ctx->channels; i++) { m->mux[i] = 0; } } for (i = 0; i < submaps; i++) { Vorbis_ReadBits(ctx, 8); /* time value */ m->floorIdx[i] = Vorbis_ReadBits(ctx, 8); m->residueIdx[i] = Vorbis_ReadBits(ctx, 8); } return 0; } /*########################################################################################################################* *------------------------------------------------------imdct impl---------------------------------------------------------* *#########################################################################################################################*/ #define PI MATH_PI static cc_uint32 Vorbis_ReverseBits(cc_uint32 v) { v = ((v >> 1) & 0x55555555) | ((v & 0x55555555) << 1); v = ((v >> 2) & 0x33333333) | ((v & 0x33333333) << 2); v = ((v >> 4) & 0x0F0F0F0F) | ((v & 0x0F0F0F0F) << 4); v = ((v >> 8) & 0x00FF00FF) | ((v & 0x00FF00FF) << 8); v = (v >> 16) | (v << 16); return v; } void imdct_init(struct imdct_state* state, int n) { int k, k2, n4 = n >> 2, n8 = n >> 3, log2_n; float *A = state->a, *B = state->b, *C = state->c; cc_uint32* reversed; log2_n = Math_ilog2(n); reversed = state->reversed; state->n = n; state->log2_n = log2_n; /* setup twiddle factors */ for (k = 0, k2 = 0; k < n4; k++, k2 += 2) { A[k2] = Math_CosF((4*k * PI) / n); A[k2+1] = -Math_SinF((4*k * PI) / n); B[k2] = Math_CosF(((k2+1) * PI) / (2*n)); B[k2+1] = Math_SinF(((k2+1) * PI) / (2*n)); } for (k = 0, k2 = 0; k < n8; k++, k2 += 2) { C[k2] = Math_CosF(((k2+1) * (2*PI)) / n); C[k2+1] = -Math_SinF(((k2+1) * (2*PI)) / n); } for (k = 0; k < n8; k++) { reversed[k] = Vorbis_ReverseBits(k) >> (32-log2_n+3); } } void imdct_calc(float* in, float* out, struct imdct_state* state) { int k, k2, k4, n = state->n; int n2 = n >> 1, n4 = n >> 2, n8 = n >> 3, n3_4 = n - n4; int l, log2_n; cc_uint32* reversed; /* Optimised algorithm from "The use of multirate filter banks for coding of high quality digital audio" */ /* Uses a few fixes for the paper noted at http://www.nothings.org/stb_vorbis/mdct_01.txt */ float *A = state->a, *B = state->b, *C = state->c; float u[VORBIS_MAX_BLOCK_SIZE / 2]; float w[VORBIS_MAX_BLOCK_SIZE / 2]; float e_1, e_2, f_1, f_2; float g_1, g_2, h_1, h_2; float x_1, x_2, y_1, y_2; /* spectral coefficients, step 1, step 2 */ /* TODO avoid k */ for (k = 0, k2 = 0, k4 = 0; k < n8; k++, k2 += 2, k4 += 4) { e_1 = -in[k4+3]; e_2 = -in[k4+1]; g_1 = e_1 * A[n2-1-k2] + e_2 * A[n2-2-k2]; g_2 = e_1 * A[n2-2-k2] - e_2 * A[n2-1-k2]; f_1 = in[n2-4-k4]; f_2 = in[n2-2-k4]; h_2 = f_1 * A[n4-2-k2] - f_2 * A[n4-1-k2]; h_1 = f_1 * A[n4-1-k2] + f_2 * A[n4-2-k2]; w[n4+1+k2] = h_2 + g_2; w[n4+0+k2] = h_1 + g_1; w[k2+1] = (h_2 - g_2) * A[n2-4-k4] - (h_1 - g_1) * A[n2-3-k4]; w[k2+0] = (h_1 - g_1) * A[n2-4-k4] + (h_2 - g_2) * A[n2-3-k4]; } /* step 3 */ log2_n = state->log2_n; for (l = 0; l <= log2_n - 4; l++) { int k0 = n >> (l+3), k1 = 1 << (l+3); int r, r2, rMax = n >> (l+4), s2, s2Max = 1 << (l+2); for (r = 0, r2 = 0; r < rMax; r++, r2 += 2) { for (s2 = 0; s2 < s2Max; s2 += 2) { e_1 = w[n2-1-k0*s2-r2]; e_2 = w[n2-2-k0*s2-r2]; f_1 = w[n2-1-k0*(s2+1)-r2]; f_2 = w[n2-2-k0*(s2+1)-r2]; u[n2-1-k0*s2-r2] = e_1 + f_1; u[n2-2-k0*s2-r2] = e_2 + f_2; u[n2-1-k0*(s2+1)-r2] = (e_1 - f_1) * A[r*k1] - (e_2 - f_2) * A[r*k1+1]; u[n2-2-k0*(s2+1)-r2] = (e_2 - f_2) * A[r*k1] + (e_1 - f_1) * A[r*k1+1]; } } /* TODO: eliminate this, do w/u in-place */ /* TODO: dynamically allocate mem for imdct */ if (l+1 <= log2_n - 4) { Mem_Copy(w, u, n2 * sizeof(float)); } } /* step 4, step 5, step 6, step 7, step 8, output */ reversed = state->reversed; for (k = 0, k2 = 0; k < n8; k++, k2 += 2) { cc_uint32 j = reversed[k], j4 = j << 2; e_1 = u[n2-j4-1]; e_2 = u[n2-j4-2]; f_1 = u[j4+1]; f_2 = u[j4+0]; g_1 = e_1 + f_1 + C[k2+1] * (e_1 - f_1) + C[k2] * (e_2 + f_2); h_1 = e_1 + f_1 - C[k2+1] * (e_1 - f_1) - C[k2] * (e_2 + f_2); g_2 = e_2 - f_2 + C[k2+1] * (e_2 + f_2) - C[k2] * (e_1 - f_1); h_2 = -e_2 + f_2 + C[k2+1] * (e_2 + f_2) - C[k2] * (e_1 - f_1); x_1 = -0.5f * (g_1 * B[k2] + g_2 * B[k2+1]); x_2 = -0.5f * (g_1 * B[k2+1] - g_2 * B[k2]); out[n4-1-k] = -x_2; out[n4+k] = x_2; out[n3_4-1-k] = x_1; out[n3_4+k] = x_1; y_1 = -0.5f * (h_1 * B[n2-2-k2] + h_2 * B[n2-1-k2]); y_2 = -0.5f * (h_1 * B[n2-1-k2] - h_2 * B[n2-2-k2]); out[k] = -y_2; out[n2-1-k] = y_2; out[n2+k] = y_1; out[n-1-k] = y_1; } } /*########################################################################################################################* *-----------------------------------------------------Vorbis setup--------------------------------------------------------* *#########################################################################################################################*/ struct Mode { cc_uint8 blockSizeFlag, mappingIdx; }; static cc_result Mode_DecodeSetup(struct VorbisState* ctx, struct Mode* m) { int windowType, transformType; m->blockSizeFlag = Vorbis_ReadBit(ctx); windowType = Vorbis_ReadBits(ctx, 16); if (windowType != 0) return VORBIS_ERR_MODE_WINDOW; transformType = Vorbis_ReadBits(ctx, 16); if (transformType != 0) return VORBIS_ERR_MODE_TRANSFORM; m->mappingIdx = Vorbis_ReadBits(ctx, 8); return 0; } static void Vorbis_CalcWindow(struct VorbisWindow* window, int blockSize) { int i, n = blockSize / 2; float *cur_window, *prev_window; double inner; window->Cur = window->Prev + n; cur_window = window->Cur; prev_window = window->Prev; for (i = 0; i < n; i++) { inner = Math_SinF((i + 0.5f) / n * (PI/2)); cur_window[i] = Math_SinF((PI/2) * inner * inner); } for (i = 0; i < n; i++) { inner = Math_SinF((i + 0.5f) / n * (PI/2) + (PI/2)); prev_window[i] = Math_SinF((PI/2) * inner * inner); } } void Vorbis_Init(struct VorbisState* ctx) { Mem_Set(ctx, 0, sizeof(*ctx) - sizeof(ctx->imdct)); } void Vorbis_Free(struct VorbisState* ctx) { int i; for (i = 0; i < ctx->numCodebooks; i++) { Codebook_Free(&ctx->codebooks[i]); } Mem_Free(ctx->codebooks); Mem_Free(ctx->floors); Mem_Free(ctx->residues); Mem_Free(ctx->mappings); Mem_Free(ctx->modes); Mem_Free(ctx->windowRaw); Mem_Free(ctx->temp); } static cc_bool Vorbis_ValidBlockSize(cc_uint32 size) { return size >= 64 && size <= VORBIS_MAX_BLOCK_SIZE && Math_IsPowOf2(size); } /* Vorbis spec 4.2.1. Common header decode */ static cc_result Vorbis_CheckHeader(struct VorbisState* ctx, cc_uint8 type) { cc_uint8 header[7]; cc_bool OK; cc_result res; if ((res = Ogg_Read(ctx->source, header, sizeof(header)))) return res; if (header[0] != type) return VORBIS_ERR_WRONG_HEADER; OK = header[1] == 'v' && header[2] == 'o' && header[3] == 'r' && header[4] == 'b' && header[5] == 'i' && header[6] == 's'; return OK ? 0 : ERR_INVALID_ARGUMENT; } /* Vorbis spec 4.2.2. Identification header */ static cc_result Vorbis_DecodeIdentifier(struct VorbisState* ctx) { cc_uint8 header[23]; cc_uint32 version; cc_result res; if ((res = Ogg_Read(ctx->source, header, sizeof(header)))) return res; version = Stream_GetU32_LE(&header[0]); if (version != 0) return VORBIS_ERR_VERSION; ctx->channels = header[4]; ctx->sampleRate = Stream_GetU32_LE(&header[5]); /* (12) bitrate_maximum, nominal, minimum */ ctx->blockSizes[0] = 1 << (header[21] & 0xF); ctx->blockSizes[1] = 1 << (header[21] >> 4); if (!Vorbis_ValidBlockSize(ctx->blockSizes[0])) return VORBIS_ERR_BLOCKSIZE; if (!Vorbis_ValidBlockSize(ctx->blockSizes[1])) return VORBIS_ERR_BLOCKSIZE; if (ctx->blockSizes[0] > ctx->blockSizes[1]) return VORBIS_ERR_BLOCKSIZE; if (ctx->channels == 0 || ctx->channels > VORBIS_MAX_CHANS) return VORBIS_ERR_CHANS; /* check framing flag */ return (header[22] & 1) ? 0 : VORBIS_ERR_FRAMING; } /* Vorbis spec 4.2.3. Comment header */ static cc_result Vorbis_DecodeComments(struct VorbisState* ctx) { cc_uint32 i, len, comments; cc_uint8 flag; cc_result res; struct OggState* source = ctx->source; /* vendor name, followed by comments */ if ((res = Ogg_ReadU32(source, &len))) return res; if ((res = Ogg_Skip(source, len))) return res; if ((res = Ogg_ReadU32(source, &comments))) return res; for (i = 0; i < comments; i++) { /* comments such as artist, year, etc */ if ((res = Ogg_ReadU32(source, &len))) return res; if ((res = Ogg_Skip(source, len))) return res; } /* check framing flag */ if ((res = Ogg_ReadU8(source, &flag))) return res; return (flag & 1) ? 0 : VORBIS_ERR_FRAMING; } /* Vorbis spec 4.2.4. Setup header */ static cc_result Vorbis_DecodeSetup(struct VorbisState* ctx) { cc_uint32 framing, alignSkip; int i, count; cc_result res; count = Vorbis_ReadBits(ctx, 8) + 1; ctx->codebooks = (struct Codebook*)Mem_TryAlloc(count, sizeof(struct Codebook)); if (!ctx->codebooks) return ERR_OUT_OF_MEMORY; for (i = 0; i < count; i++) { res = Codebook_DecodeSetup(ctx, &ctx->codebooks[i]); if (res) return res; } ctx->numCodebooks = count; count = Vorbis_ReadBits(ctx, 6) + 1; for (i = 0; i < count; i++) { int time = Vorbis_ReadBits(ctx, 16); if (time != 0) return VORBIS_ERR_TIME_TYPE; } count = Vorbis_ReadBits(ctx, 6) + 1; ctx->floors = (struct Floor*)Mem_TryAlloc(count, sizeof(struct Floor)); if (!ctx->floors) return ERR_OUT_OF_MEMORY; for (i = 0; i < count; i++) { int floor = Vorbis_ReadBits(ctx, 16); if (floor != 1) return VORBIS_ERR_FLOOR_TYPE; res = Floor_DecodeSetup(ctx, &ctx->floors[i]); if (res) return res; } count = Vorbis_ReadBits(ctx, 6) + 1; ctx->residues = (struct Residue*)Mem_TryAlloc(count, sizeof(struct Residue)); if (!ctx->residues) return ERR_OUT_OF_MEMORY; for (i = 0; i < count; i++) { int residue = Vorbis_ReadBits(ctx, 16); if (residue > 2) return VORBIS_ERR_FLOOR_TYPE; res = Residue_DecodeSetup(ctx, &ctx->residues[i], residue); if (res) return res; } count = Vorbis_ReadBits(ctx, 6) + 1; ctx->mappings = (struct Mapping*)Mem_TryAlloc(count, sizeof(struct Mapping)); if (!ctx->mappings) return ERR_OUT_OF_MEMORY; for (i = 0; i < count; i++) { int mapping = Vorbis_ReadBits(ctx, 16); if (mapping != 0) return VORBIS_ERR_MAPPING_TYPE; res = Mapping_DecodeSetup(ctx, &ctx->mappings[i]); if (res) return res; } count = Vorbis_ReadBits(ctx, 6) + 1; ctx->modes = (struct Mode*)Mem_TryAlloc(count, sizeof(struct Mode)); if (!ctx->modes) return ERR_OUT_OF_MEMORY; for (i = 0; i < count; i++) { res = Mode_DecodeSetup(ctx, &ctx->modes[i]); if (res) return res; } ctx->modeNumBits = iLog(count - 1); /* ilog([vorbis_mode_count]-1) bits */ framing = Vorbis_ReadBit(ctx); Vorbis_AlignBits(ctx); /* check framing flag */ return (framing & 1) ? 0 : VORBIS_ERR_FRAMING; } /* Vorbis spec 4.2. Header decode and decode setup */ cc_result Vorbis_DecodeHeaders(struct VorbisState* ctx) { cc_uint32 count; cc_result res; if ((res = Vorbis_CheckHeader(ctx, 1))) return res; if ((res = Vorbis_DecodeIdentifier(ctx))) return res; Ogg_DiscardPacket(ctx->source); if ((res = Vorbis_CheckHeader(ctx, 3))) return res; if ((res = Vorbis_DecodeComments(ctx))) return res; Ogg_DiscardPacket(ctx->source); if ((res = Vorbis_CheckHeader(ctx, 5))) return res; if ((res = Vorbis_DecodeSetup(ctx))) return res; Ogg_DiscardPacket(ctx->source); /* window calculations can be pre-computed here */ count = ctx->blockSizes[0] + ctx->blockSizes[1]; ctx->windowRaw = (float*)Mem_TryAlloc(count, sizeof(float)); if (!ctx->windowRaw) return ERR_OUT_OF_MEMORY; ctx->windows[0].Prev = ctx->windowRaw; ctx->windows[1].Prev = ctx->windowRaw + ctx->blockSizes[0]; Vorbis_CalcWindow(&ctx->windows[0], ctx->blockSizes[0]); Vorbis_CalcWindow(&ctx->windows[1], ctx->blockSizes[1]); count = ctx->channels * ctx->blockSizes[1]; ctx->temp = (float*)Mem_TryAllocCleared(count * 3, sizeof(float)); if (!ctx->temp) return ERR_OUT_OF_MEMORY; ctx->values[0] = ctx->temp + count; ctx->values[1] = ctx->temp + count * 2; imdct_init(&ctx->imdct[0], ctx->blockSizes[0]); imdct_init(&ctx->imdct[1], ctx->blockSizes[1]); return 0; } /*########################################################################################################################* *-----------------------------------------------------Vorbis frame--------------------------------------------------------* *#########################################################################################################################*/ /* Vorbis spec 4.3. Audio packet decode and synthesis */ cc_result Vorbis_DecodeFrame(struct VorbisState* ctx) { /* frame header */ cc_uint32 packetType; struct Mapping* mapping; struct Mode* mode; int modeIdx; /* floor/residue */ cc_bool hasFloor[VORBIS_MAX_CHANS]; cc_bool hasResidue[VORBIS_MAX_CHANS]; cc_bool doNotDecode[VORBIS_MAX_CHANS]; float* data[VORBIS_MAX_CHANS]; int submap, floorIdx; int ch, residueIdx; /* inverse coupling */ int magChannel, angChannel; float* magValues, m; float* angValues, a; /* misc variables */ float* tmp; cc_uint32 alignSkip; int i, j; cc_result res; res = Vorbis_TryReadBits(ctx, 1, &packetType); if (res) return res; if (packetType) return VORBIS_ERR_FRAME_TYPE; modeIdx = Vorbis_ReadBits(ctx, ctx->modeNumBits); mode = &ctx->modes[modeIdx]; mapping = &ctx->mappings[mode->mappingIdx]; /* decode window shape */ ctx->curBlockSize = ctx->blockSizes[mode->blockSizeFlag]; ctx->dataSize = ctx->curBlockSize / 2; /* long window lapping flags - we don't care about them though */ if (mode->blockSizeFlag) { Vorbis_ReadBits(ctx, 2); } /* TODO: do we just SkipBits here */ /* swap prev and cur outputs around */ tmp = ctx->values[1]; ctx->values[1] = ctx->values[0]; ctx->values[0] = tmp; Mem_Set(ctx->values[0], 0, ctx->channels * ctx->curBlockSize); for (i = 0; i < ctx->channels; i++) { ctx->curOutput[i] = ctx->values[0] + i * ctx->curBlockSize; ctx->prevOutput[i] = ctx->values[1] + i * ctx->prevBlockSize; } /* decode floor */ for (i = 0; i < ctx->channels; i++) { submap = mapping->mux[i]; floorIdx = mapping->floorIdx[submap]; hasFloor[i] = Floor_DecodeFrame(ctx, &ctx->floors[floorIdx], i); hasResidue[i] = hasFloor[i]; } /* non-zero vector propogate */ for (i = 0; i < mapping->couplingSteps; i++) { magChannel = mapping->magnitude[i]; angChannel = mapping->angle[i]; if (hasResidue[magChannel] || hasResidue[angChannel]) { hasResidue[magChannel] = true; hasResidue[angChannel] = true; } } /* decode residue */ for (i = 0; i < mapping->submaps; i++) { ch = 0; /* map residue data to actual channel data */ for (j = 0; j < ctx->channels; j++) { if (mapping->mux[j] != i) continue; doNotDecode[ch] = !hasResidue[j]; data[ch] = ctx->curOutput[j]; ch++; } residueIdx = mapping->floorIdx[i]; Residue_DecodeFrame(ctx, &ctx->residues[residueIdx], ch, doNotDecode, data); } /* inverse coupling */ for (i = mapping->couplingSteps - 1; i >= 0; i--) { magValues = ctx->curOutput[mapping->magnitude[i]]; angValues = ctx->curOutput[mapping->angle[i]]; for (j = 0; j < ctx->dataSize; j++) { m = magValues[j]; a = angValues[j]; if (m > 0.0f) { if (a > 0.0f) { angValues[j] = m - a; } else { angValues[j] = m; magValues[j] = m + a; } } else { if (a > 0.0f) { angValues[j] = m + a; } else { angValues[j] = m; magValues[j] = m - a; } } } } /* compute dot product of floor and residue, producing audio spectrum vector */ for (i = 0; i < ctx->channels; i++) { if (!hasFloor[i]) continue; submap = mapping->mux[i]; floorIdx = mapping->floorIdx[submap]; Floor_Synthesis(ctx, &ctx->floors[floorIdx], i); } /* inverse monolithic transform of audio spectrum vector */ for (i = 0; i < ctx->channels; i++) { tmp = ctx->curOutput[i]; if (!hasFloor[i]) { /* TODO: Do we actually need to zero data here (residue type 2 maybe) */ Mem_Set(tmp, 0, ctx->curBlockSize * sizeof(float)); } else { imdct_calc(tmp, tmp, &ctx->imdct[mode->blockSizeFlag]); /* defer windowing until output */ } } /* discard remaining bits at end of packet */ Vorbis_AlignBits(ctx); return 0; } int Vorbis_OutputFrame(struct VorbisState* ctx, cc_int16* data) { struct VorbisWindow window; float* prev[VORBIS_MAX_CHANS]; float* cur[VORBIS_MAX_CHANS]; int curQrtr, prevQrtr, overlapQtr; int curOffset, prevOffset, overlapSize; float sample; int i, ch; /* first frame decoded has no data */ if (ctx->prevBlockSize == 0) { ctx->prevBlockSize = ctx->curBlockSize; return 0; } /* data returned is from centre of previous block to centre of current block */ /* data is aligned, such that 3/4 of prev block is aligned to 1/4 of cur block */ curQrtr = ctx->curBlockSize / 4; prevQrtr = ctx->prevBlockSize / 4; overlapQtr = min(curQrtr, prevQrtr); /* So for example, consider a short block overlapping with a long block a) we need to chop off 'prev' before its halfway point b) then need to chop off the 'cur' before the halfway point of 'prev' |- ********|***** |- ********| -| - * | *** | - * | - | # | *** ===> | # | - | * - | *** | * - | ******-***|* - | *** |* - | */ curOffset = curQrtr - overlapQtr; prevOffset = prevQrtr - overlapQtr; for (i = 0; i < ctx->channels; i++) { prev[i] = ctx->prevOutput[i] + (prevQrtr * 2); cur[i] = ctx->curOutput[i]; } /* for long prev and short cur block, there will be non-overlapped data before */ for (i = 0; i < prevOffset; i++) { for (ch = 0; ch < ctx->channels; ch++) { sample = prev[ch][i]; Math_Clamp(sample, -1.0f, 1.0f); *data++ = (cc_int16)(sample * 32767); } } /* adjust pointers to start at 0 for overlapping */ for (i = 0; i < ctx->channels; i++) { prev[i] += prevOffset; cur[i] += curOffset; } overlapSize = overlapQtr * 2; window = ctx->windows[(overlapQtr * 4) == ctx->blockSizes[1]]; /* overlap and add data */ /* also perform windowing here */ for (i = 0; i < overlapSize; i++) { for (ch = 0; ch < ctx->channels; ch++) { sample = prev[ch][i] * window.Prev[i] + cur[ch][i] * window.Cur[i]; Math_Clamp(sample, -1.0f, 1.0f); *data++ = (cc_int16)(sample * 32767); } } /* for long cur and short prev block, there will be non-overlapped data after */ for (i = 0; i < ctx->channels; i++) { cur[i] += overlapSize; } for (i = 0; i < curOffset; i++) { for (ch = 0; ch < ctx->channels; ch++) { sample = cur[ch][i]; Math_Clamp(sample, -1.0f, 1.0f); *data++ = (cc_int16)(sample * 32767); } } ctx->prevBlockSize = ctx->curBlockSize; return (prevQrtr + curQrtr) * ctx->channels; }